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Admin
• Homework 3 is on the website
• Project part 1 due
• Midterm answers/results

> 90 – A (6)
75-90 – B (9)
50-75 – C (6)
< 50 – D (1)

• 10 improved, 10 got worse, 2 about the same



Wake up...skills you should have
• Find information online (e.g. what is this BibTex after all)
• Write a parser for a simple file format
• Adapt/incorporate an existing parser

• Manage your time (start early, evaluate difficulty of project)

• Pay attention in class

• Communicate



Complex Selections
• conjunction                s1 = # of tuples satisfying

                                     s2 = # of tuples satisfying
        combined SC = 

                     assuming independence of predicates

• disjunction

               combined SC = 
                     
  this 1 minus the probability of all predicates are satisfied at 

once (s1/n(r) + s2/n(r) – s1/n(r)*s2/n(r))-  union of results

• negation

                n(                  )  =  n(r) -  n(                 )
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Multiple Index Selection
GOAL: apply the most restrictive one and combine multiple of them to 

reduce the intermediate results AS EARLY AS POSSIBLE

• conjunctive selection using one index A:  select using A and then 
apply the remaining of the predicates on the retrieved tuple values

• conjunctive selection using a composite key index (R.A,R.B)-  then 
create a composite key or range from the query values and search 
directly (range search on the first attribute only)

• conjunctive selection using two indexes A and B:  search each 
separately and intersect the tuple identifiers (TIDs)

• disjunctive selection using two indexes A and B:  search each 
separately and take the union of the TIDs



Join Methods:  Nested Loop
• tuple-oriented:

• block-oriented:
                        

• reverse inner loop
    similar to above but for even outer blocks we scan
       the inner relation  in reverse

inner
blocks

outer blocks

outer blocks

inner
blocks

for each tuple t(r) in r do begin
    for each tuple t(s) in s  do begin
         join(t(r),t(s) and append the result to the output
    end
 end

for each  block b(r) in  r  do begin
    for each block  b(s)  in s  do begin
         join(b(r),b(s) and append the result to the output
    end
 end



Cost of Block-Oriented Nested Loop

• cost depends on the number of buffers and the buffer 
replacement strategy 
–  fasten 1 block from the outer relation, M  for the inner 

and LRU
                   cost:   b(r) + b(r)*b(s)   assuming that b(s) > M  
  
– fasten M  blocks  from the outer relation, and 1 for the 

inner
1: read M  from the outer                            cost:     M      blocks 
2: for each block of s join 1 X M  blocks    cost:    b(s)     -”-                     

  
3: repeat with the next  M  blocks of r until all done        

                                                        repeated  b(r)/M times
               cost = [ (M + b(s)]* b(r)/M = b(r)+[b(r)*b(s)]/M

• which relation should be the outer?

Buffer size M+1



Join Methods: Sort-Merge-Join
• two phases

– sorting phase:  sort both relations  (this can be done in 
parallel)

– merging phase:   join tuples during the merge

• cost  with M buffers  

cost = br ( 2 logM–1(br / M) + 1) + br + bs ( 2 logM–1(bs / M) + 1) + bs +br +bs 

  sort R on joining attribute
  sort S on joining attribute
 merge(sorted-R,sorted-S)

Sorting R Sorting S MergeWrite
sorted Ssorted WriteR

if one pass is required the expressions logM–1(br/M) =1 and logM–1(bs/M) =1 so  the 
total cost is  3*b(r)+b(r)+b(r)+ 3*b(s)+b(s)+b(s) =5*b(r)+ 5*b(s)
However, if M> b(r)  and b(s) then the expression evaluates to 3*b(r)+3*b(s)).



Join Methods: Hash-Join
• two phases

– hash phase:  hash  both relations into hashed partitions  (this can be done in parallel)
– bucket-wise join phase:   join tuples of the same partitions only

• Number of partitions is large to make each 
      partition of Hj(R) fit in the buffer memory

-- each Hj(R) consists of several blocks

• We assume that  buckets of Hj(R) fit in the buffer memory 
(and that after hashing the partitions of R and S have the same size with R and S):

 cost =  b(r) + b(r) + b(s) + b(s) + b(r) + b(s)  =  3 (b(r) + b(s))

hash R on the joining  into H(R) buckets
hash S on the joining  into H(S) buckets
nested-loop join  of corresponding buckets Hj(R),Hj(S)
     or main-memory hash index join of               -”-     



Hash-Join Algorithm Details
1. Partition the relation s using hashing function h.  When 

partitioning a relation, one block of memory is reserved as 
the output buffer for each partition.

2. Partition r similarly.
3. For each i:

(a)Load si into memory and build an in-memory hash index 
on it using the join attribute.  This hash index uses a 
different hash function than the earlier one h.

(b)Read the tuples in ri from the disk one by one.  For each 
tuple tr locate each matching tuple ts in si using the in-
memory hash index.  Output the concatenation of their 
attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and 
         r  is called the probe input.



Example of Cost of Hash-Join
• M= 20 blocks
• bdepositor= 100 
• bcustomer = 400.
• depositor is the build input.  Partition it into 5 partitions, each of 

size 20 blocks.  This partitioning can be done in one pass.
• partition customer into 5 partitions,each of size 80.  This is also 

done in one pass.
• Do the partition joins- for each j put 20 blocks of partition 

depositor(j) in memory, built the hash index, and do the probes 
with the 80 blocks of customer(j)

• Therefore total cost, ignoring cost of writing partially filled 
blocks:
– 3(100 + 400) = 1500 I/Os

customer     depositor



Hash-Join algorithm (Cont.)
• The value n and the hash function h is chosen such that each si should fit in 

memory.
– Typically n is chosen as bs/M * f  where f is a “fudge factor”, typically 

around 1.2
– The probe relation partitions ri need not fit in memory

• Recursive partitioning required if number of partitions n is greater than 
number of pages M of memory.
– instead of partitioning n ways, use  M – 1 partitions for s
– Further partition the M – 1 partitions using a different hash function
– Use same partitioning method on r
– Rarely required:  e.g., recursive partitioning not needed for relations of 

1GB or less with memory size of 2MB, with block size of 4KB.



Join Methods: Indexed-Join
• inner relation has an index (clustering or not) 

• cost =  b(r) + n(r)* cost(σ(S.A=c))
where cost(σ(S.A=c)) is as computed for indexed selection

for each  block b(r) in  r  do begin
    for each tuple t(r)   in b(r)  do begin
         search the index B on s with the value t.A of the joining attr. A 
         and join(t(r),t.A)
    end
 end



Estimation of Join Size: 
• 0 <=               <=  n(r)*n(s)          (0 when nothing joins and  when everything joins)

–  if joining attribute  is a key of R  then                           <=  n(s) 
    /* each value of S.A would join to at most one value of R.A */

–  if           -”-               is a key of R and a foreign key of S  then                 =  n(s) 
  /* each value of S.A would join to exactly one value of R.A */

–  if                             is not a key then  
              each value of A in R  appears   n(s)/V(A,s)  times in S, therefore,
               n(r)   tuples of R  produce:                                              =  n(r)*n(s) / V(A,s)
  
              symmetrically we can obtain:                                          = n(r)*n(s) / V(A,r) 

        if the values are different  we use:   min{n(r)*n(s) / V(A,s) , n(r)*n(s) / V(A,r)}

n(R     S)

n(R     S)

n(R     S)

n(R       S)

n( R X S )

n(R     S)

n(R      S)

n(R      S)

n(R      S)

n(R      S)



Other Operations
• Outer Joins

– Left outer join  easy
– Right/Full outer join (may need some bookkeeping)

• Duplicate elimination
– Hard
– Sort at the end and eliminate
– Hash output and eliminate

•  Aggregates
– Sum, count, min, max easily kept during execution
– Avg = Sum / count
– Std = sqrt(ssum/count)



External Sorting with Sort-Merge
●external vs internal sorting: relation/file does not fit in memory

●create runs phase:

●merge-runs phase:
●

● this assumes that a block from each run can be kept in main 
memory.  If not, then the same algorithm has to be applied in 
multiple passes

repeat until done
    read M  blocks of the relation (or rest if <=M)
    internal sort using any sort method, e.g 

QuickSort(M)
    write the sorted tuples into a run R data file 
end

read one block from each run;
merge tuples on the result;
advance the pointer from the run you 

appended last;
if the block of a run is empty, read the 

next one until all blocks of all runs are 
done



External Merge Sort Cost
• Cost analysis:

– Initial number of runs: br/M
– Total number of merge passes required: logM–1(br/M).
– Block transfers for initial run creation is br +br=2br

• for final pass, we don’t count write cost 
    we ignore final write cost for all operations since the output of an 

operation may be pipelined  to the display or to a parent operation 
without being written to disk. If pipelined, it will be counted in the 
cost of the follow up operator

• Thus total number of block transfers for external sorting:

2 br (  logM–1(br / M)) + br = br ( 2 logM–1(br / M) + 1)
                     

– If M ≥ br/M (only one pass is required) the expression logM–1(br/M) =1  
            total cost = 3br

– However, if M > br then this expression evaluates to 0 
            total cost =br     ONLY


