
CMSC 424 – Database design
Lecture 17

Query processing

Mihai Pop

Admin
• Homework 3 is on the website
• Project part 1 due
• Midterm answers/results

> 90 – A (6)
75-90 – B (9)
50-75 – C (6)
< 50 – D (1)

• 10 improved, 10 got worse, 2 about the same

Wake up...skills you should have
• Find information online (e.g. what is this BibTex after all)
• Write a parser for a simple file format
• Adapt/incorporate an existing parser

• Manage your time (start early, evaluate difficulty of project)

• Pay attention in class

• Communicate

Complex Selections
• conjunction s1 = # of tuples satisfying

 s2 = # of tuples satisfying
 combined SC =

 assuming independence of predicates

• disjunction

 combined SC =

 this 1 minus the probability of all predicates are satisfied at

once (s1/n(r) + s2/n(r) – s1/n(r)*s2/n(r))- union of results

• negation

 n() = n(r) - n()

s1∗s2 /nr∗nr

1∨2

1−1−s1/nr∗1−s2/n r

¬

)(rθσ ¬)(rθσ

1θ
2θ

1∧2

Multiple Index Selection
GOAL: apply the most restrictive one and combine multiple of them to

reduce the intermediate results AS EARLY AS POSSIBLE

• conjunctive selection using one index A: select using A and then
apply the remaining of the predicates on the retrieved tuple values

• conjunctive selection using a composite key index (R.A,R.B)- then
create a composite key or range from the query values and search
directly (range search on the first attribute only)

• conjunctive selection using two indexes A and B: search each
separately and intersect the tuple identifiers (TIDs)

• disjunctive selection using two indexes A and B: search each
separately and take the union of the TIDs

Join Methods: Nested Loop
• tuple-oriented:

• block-oriented:

• reverse inner loop
 similar to above but for even outer blocks we scan
 the inner relation in reverse

inner
blocks

outer blocks

outer blocks

inner
blocks

for each tuple t(r) in r do begin
 for each tuple t(s) in s do begin
 join(t(r),t(s) and append the result to the output
 end
 end

for each block b(r) in r do begin
 for each block b(s) in s do begin
 join(b(r),b(s) and append the result to the output
 end
 end

Cost of Block-Oriented Nested Loop

• cost depends on the number of buffers and the buffer
replacement strategy
– fasten 1 block from the outer relation, M for the inner

and LRU
 cost: b(r) + b(r)*b(s) assuming that b(s) > M

– fasten M blocks from the outer relation, and 1 for the

inner
1: read M from the outer cost: M blocks
2: for each block of s join 1 X M blocks cost: b(s) -”-

3: repeat with the next M blocks of r until all done

 repeated b(r)/M times
 cost = [(M + b(s)]* b(r)/M = b(r)+[b(r)*b(s)]/M

• which relation should be the outer?

Buffer size M+1

Join Methods: Sort-Merge-Join
• two phases

– sorting phase: sort both relations (this can be done in
parallel)

– merging phase: join tuples during the merge

• cost with M buffers

cost = br (2 logM–1(br / M) + 1) + br + bs (2 logM–1(bs / M) + 1) + bs +br +bs

 sort R on joining attribute
 sort S on joining attribute
 merge(sorted-R,sorted-S)

Sorting R Sorting S MergeWrite
sorted Ssorted WriteR

if one pass is required the expressions logM–1(br/M) =1 and logM–1(bs/M) =1 so the
total cost is 3*b(r)+b(r)+b(r)+ 3*b(s)+b(s)+b(s) =5*b(r)+ 5*b(s)
However, if M> b(r) and b(s) then the expression evaluates to 3*b(r)+3*b(s)).

Join Methods: Hash-Join
• two phases

– hash phase: hash both relations into hashed partitions (this can be done in parallel)
– bucket-wise join phase: join tuples of the same partitions only

• Number of partitions is large to make each
 partition of Hj(R) fit in the buffer memory

-- each Hj(R) consists of several blocks

• We assume that buckets of Hj(R) fit in the buffer memory
(and that after hashing the partitions of R and S have the same size with R and S):

 cost = b(r) + b(r) + b(s) + b(s) + b(r) + b(s) = 3 (b(r) + b(s))

hash R on the joining into H(R) buckets
hash S on the joining into H(S) buckets
nested-loop join of corresponding buckets Hj(R),Hj(S)
 or main-memory hash index join of -”-

Hash-Join Algorithm Details
1. Partition the relation s using hashing function h. When

partitioning a relation, one block of memory is reserved as
the output buffer for each partition.

2. Partition r similarly.
3. For each i:

(a)Load si into memory and build an in-memory hash index
on it using the join attribute. This hash index uses a
different hash function than the earlier one h.

(b)Read the tuples in ri from the disk one by one. For each
tuple tr locate each matching tuple ts in si using the in-
memory hash index. Output the concatenation of their
attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and
 r is called the probe input.

Example of Cost of Hash-Join
• M= 20 blocks
• bdepositor= 100
• bcustomer = 400.
• depositor is the build input. Partition it into 5 partitions, each of

size 20 blocks. This partitioning can be done in one pass.
• partition customer into 5 partitions,each of size 80. This is also

done in one pass.
• Do the partition joins- for each j put 20 blocks of partition

depositor(j) in memory, built the hash index, and do the probes
with the 80 blocks of customer(j)

• Therefore total cost, ignoring cost of writing partially filled
blocks:
– 3(100 + 400) = 1500 I/Os

customer depositor

Hash-Join algorithm (Cont.)
• The value n and the hash function h is chosen such that each si should fit in

memory.
– Typically n is chosen as bs/M * f where f is a “fudge factor”, typically

around 1.2
– The probe relation partitions ri need not fit in memory

• Recursive partitioning required if number of partitions n is greater than
number of pages M of memory.
– instead of partitioning n ways, use M – 1 partitions for s
– Further partition the M – 1 partitions using a different hash function
– Use same partitioning method on r
– Rarely required: e.g., recursive partitioning not needed for relations of

1GB or less with memory size of 2MB, with block size of 4KB.

Join Methods: Indexed-Join
• inner relation has an index (clustering or not)

• cost = b(r) + n(r)* cost(σ(S.A=c))
where cost(σ(S.A=c)) is as computed for indexed selection

for each block b(r) in r do begin
 for each tuple t(r) in b(r) do begin
 search the index B on s with the value t.A of the joining attr. A
 and join(t(r),t.A)
 end
 end

Estimation of Join Size:
• 0 <= <= n(r)*n(s) (0 when nothing joins and when everything joins)

– if joining attribute is a key of R then <= n(s)
 /* each value of S.A would join to at most one value of R.A */

– if -”- is a key of R and a foreign key of S then = n(s)
 /* each value of S.A would join to exactly one value of R.A */

– if is not a key then
 each value of A in R appears n(s)/V(A,s) times in S, therefore,
 n(r) tuples of R produce: = n(r)*n(s) / V(A,s)

 symmetrically we can obtain: = n(r)*n(s) / V(A,r)

 if the values are different we use: min{n(r)*n(s) / V(A,s) , n(r)*n(s) / V(A,r)}

n(R S)

n(R S)

n(R S)

n(R S)

n(R X S)

n(R S)

n(R S)

n(R S)

n(R S)

n(R S)

Other Operations
• Outer Joins

– Left outer join easy
– Right/Full outer join (may need some bookkeeping)

• Duplicate elimination
– Hard
– Sort at the end and eliminate
– Hash output and eliminate

• Aggregates
– Sum, count, min, max easily kept during execution
– Avg = Sum / count
– Std = sqrt(ssum/count)

External Sorting with Sort-Merge
●external vs internal sorting: relation/file does not fit in memory

●create runs phase:

●merge-runs phase:
●

● this assumes that a block from each run can be kept in main
memory. If not, then the same algorithm has to be applied in
multiple passes

repeat until done
 read M blocks of the relation (or rest if <=M)
 internal sort using any sort method, e.g

QuickSort(M)
 write the sorted tuples into a run R data file
end

read one block from each run;
merge tuples on the result;
advance the pointer from the run you

appended last;
if the block of a run is empty, read the

next one until all blocks of all runs are
done

External Merge Sort Cost
• Cost analysis:

– Initial number of runs: br/M
– Total number of merge passes required: logM–1(br/M).
– Block transfers for initial run creation is br +br=2br

• for final pass, we don’t count write cost
 we ignore final write cost for all operations since the output of an

operation may be pipelined to the display or to a parent operation
without being written to disk. If pipelined, it will be counted in the
cost of the follow up operator

• Thus total number of block transfers for external sorting:

2 br (logM–1(br / M)) + br = br (2 logM–1(br / M) + 1)

– If M ≥ br/M (only one pass is required) the expression logM–1(br/M) =1
 total cost = 3br

– However, if M > br then this expression evaluates to 0
 total cost =br ONLY

