
CMSC 424 – Database design
Lecture 18

Query optimization

Mihai Pop

Admin
• More midterm solutions
• Projects – do not be late!

IntroductionIntroduction

■ Alternative ways of evaluating a given query

● Equivalent expressions

● Different algorithms for each operation

Introduction (Cont.)Introduction (Cont.)

■ An evaluation plan defines exactly what algorithm is used for each operation, and
how the execution of the operations is coordinated.

Introduction (Cont.)Introduction (Cont.)

■ Cost difference between evaluation plans for a query can be enormous

● E.g. seconds vs. days in some cases

■ Steps in cost-based query optimization

★ Generate logically equivalent expressions using equivalence rules

★ Annotate resultant expressions to get alternative query plans

★ Choose the cheapest plan based on estimated cost

■ Estimation of plan cost based on:

● Statistical information about relations. Examples:
 number of tuples, number of distinct values for an attribute

● Statistics estimation for intermediate results
 to compute cost of complex expressions

● Cost formulae for algorithms, computed using statistics

Generating Equivalent Expressions

Transformation of Relational ExpressionsTransformation of Relational Expressions

■ Two relational algebra expressions are said to be equivalent if the two
expressions generate the same set of tuples on every legal database instance

● Note: order of tuples is irrelevant

■ In SQL, inputs and outputs are multisets of tuples

● Two expressions in the multiset version of the relational algebra are said
to be equivalent if the two expressions generate the same multiset of
tuples on every legal database instance.

■ An equivalence rule says that expressions of two forms are equivalent

● Can replace expression of first form by second, or vice versa

Equivalence RulesEquivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of
individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is needed, the others
can be omitted.

4. Selections can be combined with Cartesian products and theta joins.

■ σθ(E1 X E2) = E1 θ E2

■ σθ1(E1 θ2 E2) = E1 θ1∧ θ2 E2

))(())((
1221
EE θθθθ σσσσ =

))(()(
2121
EE θθθθ σσσ =∧

)())))((((
121
EE LLnLL Π=ΠΠΠ 

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are
commutative.

E1 θ E2 = E2 θ E1

6. (a) Natural join operations are associative:
 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following
manner:

 (E1 θ1 E2) θ2∧ θ3 E3 = E1 θ1∧ θ3 (E2 θ2 E3)

 where θ2 involves attributes from only E2 and E3.

Pictorial Depiction of Equivalence RulesPictorial Depiction of Equivalence Rules

Transformation rules
• Many more...
• Read chapter 14!!!!

Transformation Example: Pushing Selections

• Query: Find the names of all customers who have an
account at some branch located in Brooklyn.
Πcustomer_name(σbranch_city = “Brooklyn”

(branch (account depositor)))
• Transformation using rule 7a.

 Πcustomer_name

 ((σbranch_city =“Brooklyn” (branch))
 (account depositor))

• Performing the selection as early as possible reduces the size
of the relation to be joined.

Example with Multiple Transformations
• Query: Find the names of all customers with an account at a

Brooklyn branch whose account balance is over $1000.
Πcustomer_name((σbranch_city = “Brooklyn” ∧ balance > 1000

 (branch (account depositor)))

• Transformation using join associatively (Rule 6a):
Πcustomer_name((σbranch_city = “Brooklyn” ∧ balance > 1000

 (branch account)) depositor)
• Second form provides an opportunity to apply the “perform

selections early” rule, resulting in the subexpression
 σbranch_city = “Brooklyn” (branch) σ balance > 1000 (account)
• Thus a sequence of transformations can be useful

Multiple Transformations (Cont.)

Transformation Example: Pushing Projections

• When we compute
(σbranch_city = “Brooklyn” (branch) account)

we obtain a relation whose schema is:
(branch_name, branch_city, assets, account_number, balance)

• Push projections using equivalence rules 8a and 8b;
eliminate unneeded attributes from intermediate results to
get:
 Πcustomer_name ((
 Πaccount_number ((σbranch_city = “Brooklyn” (branch) account))
 depositor)

• Performing the projection as early as possible reduces the
size of the relation to be joined.

Πcustomer_name((σbranch_city = “Brooklyn” (branch) account) depositor)

Join Ordering Example
• For all relations r1, r2, and r3,

(r1 r2) r3 = r1 (r2 r3)
(Join Associativity)

• If r2 r3 is quite large and r1 r2 is small, we choose

 (r1 r2) r3

so that we compute and store a smaller temporary relation.

Join Ordering Example (Cont.)
• Consider the expression

Πcustomer_name ((σbranch_city = “Brooklyn” (branch))
 (account depositor))

• Could compute account depositor first, and join result
with

 σbranch_city = “Brooklyn” (branch)
but account depositor is likely to be a large relation.

• Only a small fraction of the bank’s customers are likely to
have accounts in branches located in Brooklyn
– it is better to compute

 σbranch_city = “Brooklyn” (branch) account
 first.

Enumeration of Equivalent Expressions
• Query optimizers use equivalence rules to systematically

generate expressions equivalent to the given expression
• Can generate all equivalent expressions as follows:

– Repeat
• apply all applicable equivalence rules on every

equivalent expression found so far
• add newly generated expressions to the set of

equivalent expressions
Until no new equivalent expressions are generated above

• The above approach is very expensive in space and time
– Two approaches

• Optimized plan generation based on transformation
rules

• Special case approach for queries with only selections,
projections and joins

Implementing Transformation Based Optimization
• Space requirements reduced by sharing common sub-expressions:

– when E1 is generated from E2 by an equivalence rule, usually only
the top level of the two are different, subtrees below are the same
and can be shared using pointers

• E.g. when applying join commutativity

– Same sub-expression may get generated multiple times
• Detect duplicate sub-expressions and share one copy

• Time requirements are reduced by not generating all expressions
– Dynamic programming

• We will study only the special case of dynamic programming for
join order optimization

E1 E2

