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Admin
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Choice of Evaluation Plans
• Must consider the interaction of evaluation techniques when 

choosing evaluation plans
– choosing the cheapest algorithm for each operation 

independently may not yield best overall algorithm.  E.g.
• merge-join may be costlier than hash-join, but may 

provide a sorted output which reduces the cost for an 
outer level aggregation.

• nested-loop join may provide opportunity for 
pipelining

• Practical query optimizers incorporate elements of the 
following two broad approaches:
1.Search all the plans and choose the best plan in a 

cost-based fashion.
2. Uses heuristics to choose a plan.



Cost-Based Optimization
• Consider finding the best join-order for r1    r2      . . . rn.
• There are (2(n – 1))!/(n – 1)! different join orders for above 

expression.  With n = 7, the number is 665280, with n = 10, 
the number is greater than 176 billion!

• No need to generate all the join orders.  Using dynamic 
programming, the least-cost join order for any subset of 
{r1, r2, . . . rn} is computed only once and stored for future 
use. 



Dynamic Programming in Optimization
• To find best join tree for a set of n relations:

– To find best plan for a set S of n relations, consider all 
possible plans of the form:  S1     (S – S1) where S1 is any 
non-empty subset of S.

– Recursively compute costs for joining subsets of S to find 
the cost of each plan.  Choose the cheapest of the 2n – 1 
alternatives.

– Base case for recursion:  single relation access plan
• Apply all selections on Ri using best choice of indices 

on Ri

– When plan for any subset is computed, store it and reuse 
it when it is required again, instead of recomputing it
• Dynamic programming



Join Order Optimization Algorithm
procedure findbestplan(S)

if (bestplan[S].cost ≠ ∞)
return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it 
now
if (S contains only 1 relation)
         set bestplan[S].plan and bestplan[S].cost based on the best 
way 
         of accessing S  /* Using selections on S and indices on S */

     else for each non-empty subset S1 of S such that S1 ≠ S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost 

 bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

     join results of P1 and P2 using A”
return bestplan[S]



Dynamic programming example
• Enumerate all equivalent expressions for:

A ⋈ B ⋈ C ⋈ D ⋈ E
A ⋈ (B ⋈ C ⋈ D ⋈ E)
A ⋈ (B ⋈ (C ⋈ D ⋈ E))

A ⋈ (B ⋈ (C ⋈ (D ⋈ E))) remember the best of two ways to 
A ⋈ (B ⋈ (C ⋈ (E ⋈ D)))               represent   D ⋈ E

A ⋈ (B ⋈ ((D ⋈ E)⋈ C))  here we can use the precomputed
                                                  expressions for D ⋈ E and
                                           store the best of different ways to       
                                                     represent C ⋈ D ⋈ E



Left Deep Join Trees
• In left-deep join trees, the right-hand-side input for each 

join is a relation, not the result of an intermediate join.



Cost of Optimization
• With dynamic programming time complexity of optimization with 

bushy trees is O(3n).  
– With n = 10, this number is 59000 instead of 176 billion!

• Space complexity is O(2n) 
• To find best left-deep join tree for a set of n relations:

– Consider n alternatives with one relation as right-hand side input 
and the other relations as left-hand side input.

– Modify optimization algorithm:
• Replace “for each non-empty subset S1 of S such that S1 ≠ S”
• By:   for each relation r in S

               let S1 = S – r .
• If only left-deep trees are considered, time complexity of finding best 

join order is O(n 2n)
– Space complexity remains at O(2n) 

• Cost-based optimization is expensive, but worthwhile for queries on 
large datasets (typical queries have small n, generally < 10)



Interesting Sort Orders
• Consider the expression (r1     r2)     r3     (with A as common 

attribute)
• An interesting sort order  is a particular sort order of tuples that 

could be useful for a later operation
– Using merge-join to compute r1     r2   may be costlier than hash 

join but generates result sorted on A
– Which in turn may make merge-join with r3 cheaper, which 

may reduce cost of join with r3 and minimizing overall cost 
– Sort order may also be useful for order by and for grouping

• Not sufficient to find the best join order for each subset of the set 
of n given relations
– must find the best join order for each subset, for each 

interesting sort order
– Simple extension of earlier dynamic programming algorithms
– Usually, number of interesting orders is quite small and 

doesn’t affect time/space complexity significantly



Heuristic Optimization
• Cost-based optimization is expensive, even with dynamic 

programming.
• Systems may use heuristics to reduce the number of choices 

that must be made in a cost-based fashion.
• Heuristic optimization transforms the query-tree by using a 

set of rules that typically (but not in all cases) improve 
execution performance:
– Perform selection early (reduces the number of tuples)
– Perform projection early (reduces the number of 

attributes)
– Perform most restrictive selection and join operations (i.e. 

with smallest result size) before other similar operations.
– Some systems use only heuristics, others combine 

heuristics with partial cost-based optimization.



Structure of Query Optimizers
• Many optimizers considers only left-deep join orders.

– Plus heuristics to push selections and projections down 
the query tree

– Reduces optimization complexity and generates plans 
amenable to pipelined evaluation.

• Heuristic optimization used in some versions of Oracle:
– Repeatedly pick “best” relation to join next 

• Starting from each of n starting points.  Pick best 
among these

• Intricacies of SQL complicate query optimization
– E.g. nested subqueries



Structure of Query Optimizers (Cont.)
• Some query optimizers integrate heuristic selection and the 

generation of alternative access plans.
– Frequently used approach

• heuristic rewriting of nested block structure and 
aggregation

• followed by cost-based join-order optimization for each 
block

– Some optimizers (e.g. SQL Server) apply transformations 
to entire query and do not depend on block structure

• Even with the use of heuristics, cost-based query 
optimization imposes a substantial overhead.
– But is worth it for expensive queries
– Optimizers often use simple heuristics for very cheap 

queries, and perform exhaustive enumeration for more 
expensive queries 



Optimizing Nested Subqueries**
• Nested query example:

select customer_name
from borrower
where exists (select *

                from depositor
                where depositor.customer_name =                            

                                                          borrower.customer_name)
•  SQL conceptually treats nested subqueries in the where 

clause as functions that take parameters and return a single 
value or set of values
– Parameters are variables from outer level query that are 

used in the nested subquery; such variables are called 
correlation variables



Optimizing nested subqueries
•  Conceptually, nested subquery is executed once for each 

tuple in the cross-product generated by the outer level from 
clause
– Such evaluation is called correlated evaluation 
– Note: other conditions in where clause may be used to 

compute a join (instead of a cross-product) before 
executing the nested subquery

• Correlated evaluation may be quite inefficient since 
– a large number of calls may be made to the nested query 
– there may be unnecessary random I/O as a result

• SQL optimizers attempt to transform nested subqueries to 
joins where possible, enabling use of efficient join techniques



Optimizing Nested Subqueries (Cont.)
• E.g.: earlier nested query can be rewritten as 

select customer_name
from   borrower, depositor
where depositor.customer_name = borrower.customer_name
– Note: the two queries generate different numbers of 

duplicates (why?)
• Borrower can have duplicate customer-names
• Can be modified to handle duplicates correctly as we 

will see
• In general, it is not possible/straightforward to move the 

entire nested subquery from clause into the outer level 
query from clause
– A temporary relation is created instead, and used in body 

of outer level query



Optimizing Nested Subqueries (Cont.)
In general, SQL queries of the form below can be rewritten as shown
• Rewrite:  select …

                from L1

                         where P1 and exists (select *
                from L2

      where P2)
• To:           create table t1 as

                select distinct V
                from L2

                where P2
1

            select …
                 from L1, t1 
                 where P1 and P2

2

– P2
1 contains predicates in P2 that do not involve any correlation variables

– P2
2  reintroduces predicates involving correlation variables, with 

relations renamed appropriately
– V contains all attributes used in predicates with correlation variables



Optimizing Nested Subqueries (Cont.)
• In our example, the original nested query would be 

transformed to
    create table t1 as 
         select distinct customer_name
         from depositor
    
    select customer_name
    from borrower, t1
     where t1.customer_name = borrower.customer_name

• The process of replacing a nested query by a query with a 
join (possibly with a temporary relation) is called 
decorrelation.



Optimizing nested subqueries
•  Decorrelation is more complicated when

–  the nested subquery uses aggregation, or
–  when the result of the nested subquery is used to test for 

equality, or 
– when the condition linking the nested subquery to the 

other 
query is not exists, 

– and so on.



Materialized Views**
• A materialized view is a view whose contents are computed 

and stored.
• Consider the view

create view branch_total_loan(branch_name, total_loan) as
select branch_name, sum(amount)
from loan
group by branch_name

• Materializing the above view would be very useful if the 
total loan amount is required frequently
– Saves the effort of finding multiple tuples and adding up 

their amounts



Materialized View Maintenance
• The task of keeping a materialized view up-to-date with the 

underlying data is known as materialized view 
maintenance

• Materialized views can be maintained by recomputation on 
every update

• A better option is to use incremental view maintenance
– Changes to database relations are used to compute 

changes to the materialized view, which is then updated
• View maintenance can be done by

– Manually defining triggers on insert, delete, and update 
of each relation in the view definition

– Manually written code to update the view whenever 
database relations are updated

– Periodic recomputation (e.g. nightly)
– Above methods are directly supported by many database 

systems
• Avoids manual effort/correctness issues


