
CMSC 424 – Database design
Lecture 18

Query optimization

Mihai Pop

Admin
• Homework 3 due

Choice of Evaluation Plans
• Must consider the interaction of evaluation techniques when

choosing evaluation plans
– choosing the cheapest algorithm for each operation

independently may not yield best overall algorithm. E.g.
• merge-join may be costlier than hash-join, but may

provide a sorted output which reduces the cost for an
outer level aggregation.

• nested-loop join may provide opportunity for
pipelining

• Practical query optimizers incorporate elements of the
following two broad approaches:
1.Search all the plans and choose the best plan in a

cost-based fashion.
2. Uses heuristics to choose a plan.

Cost-Based Optimization
• Consider finding the best join-order for r1 r2 . . . rn.
• There are (2(n – 1))!/(n – 1)! different join orders for above

expression. With n = 7, the number is 665280, with n = 10,
the number is greater than 176 billion!

• No need to generate all the join orders. Using dynamic
programming, the least-cost join order for any subset of
{r1, r2, . . . rn} is computed only once and stored for future
use.

Dynamic Programming in Optimization
• To find best join tree for a set of n relations:

– To find best plan for a set S of n relations, consider all
possible plans of the form: S1 (S – S1) where S1 is any
non-empty subset of S.

– Recursively compute costs for joining subsets of S to find
the cost of each plan. Choose the cheapest of the 2n – 1
alternatives.

– Base case for recursion: single relation access plan
• Apply all selections on Ri using best choice of indices

on Ri

– When plan for any subset is computed, store it and reuse
it when it is required again, instead of recomputing it
• Dynamic programming

Join Order Optimization Algorithm
procedure findbestplan(S)

if (bestplan[S].cost ≠ ∞)
return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it
now
if (S contains only 1 relation)
 set bestplan[S].plan and bestplan[S].cost based on the best
way
 of accessing S /* Using selections on S and indices on S */

 else for each non-empty subset S1 of S such that S1 ≠ S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

 bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

 join results of P1 and P2 using A”
return bestplan[S]

Dynamic programming example
• Enumerate all equivalent expressions for:

A ⋈ B ⋈ C ⋈ D ⋈ E
A ⋈ (B ⋈ C ⋈ D ⋈ E)
A ⋈ (B ⋈ (C ⋈ D ⋈ E))

A ⋈ (B ⋈ (C ⋈ (D ⋈ E))) remember the best of two ways to
A ⋈ (B ⋈ (C ⋈ (E ⋈ D))) represent D ⋈ E

A ⋈ (B ⋈ ((D ⋈ E)⋈ C)) here we can use the precomputed
 expressions for D ⋈ E and
 store the best of different ways to
 represent C ⋈ D ⋈ E

Left Deep Join Trees
• In left-deep join trees, the right-hand-side input for each

join is a relation, not the result of an intermediate join.

Cost of Optimization
• With dynamic programming time complexity of optimization with

bushy trees is O(3n).
– With n = 10, this number is 59000 instead of 176 billion!

• Space complexity is O(2n)
• To find best left-deep join tree for a set of n relations:

– Consider n alternatives with one relation as right-hand side input
and the other relations as left-hand side input.

– Modify optimization algorithm:
• Replace “for each non-empty subset S1 of S such that S1 ≠ S”
• By: for each relation r in S

 let S1 = S – r .
• If only left-deep trees are considered, time complexity of finding best

join order is O(n 2n)
– Space complexity remains at O(2n)

• Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

Interesting Sort Orders
• Consider the expression (r1 r2) r3 (with A as common

attribute)
• An interesting sort order is a particular sort order of tuples that

could be useful for a later operation
– Using merge-join to compute r1 r2 may be costlier than hash

join but generates result sorted on A
– Which in turn may make merge-join with r3 cheaper, which

may reduce cost of join with r3 and minimizing overall cost
– Sort order may also be useful for order by and for grouping

• Not sufficient to find the best join order for each subset of the set
of n given relations
– must find the best join order for each subset, for each

interesting sort order
– Simple extension of earlier dynamic programming algorithms
– Usually, number of interesting orders is quite small and

doesn’t affect time/space complexity significantly

Heuristic Optimization
• Cost-based optimization is expensive, even with dynamic

programming.
• Systems may use heuristics to reduce the number of choices

that must be made in a cost-based fashion.
• Heuristic optimization transforms the query-tree by using a

set of rules that typically (but not in all cases) improve
execution performance:
– Perform selection early (reduces the number of tuples)
– Perform projection early (reduces the number of

attributes)
– Perform most restrictive selection and join operations (i.e.

with smallest result size) before other similar operations.
– Some systems use only heuristics, others combine

heuristics with partial cost-based optimization.

Structure of Query Optimizers
• Many optimizers considers only left-deep join orders.

– Plus heuristics to push selections and projections down
the query tree

– Reduces optimization complexity and generates plans
amenable to pipelined evaluation.

• Heuristic optimization used in some versions of Oracle:
– Repeatedly pick “best” relation to join next

• Starting from each of n starting points. Pick best
among these

• Intricacies of SQL complicate query optimization
– E.g. nested subqueries

Structure of Query Optimizers (Cont.)
• Some query optimizers integrate heuristic selection and the

generation of alternative access plans.
– Frequently used approach

• heuristic rewriting of nested block structure and
aggregation

• followed by cost-based join-order optimization for each
block

– Some optimizers (e.g. SQL Server) apply transformations
to entire query and do not depend on block structure

• Even with the use of heuristics, cost-based query
optimization imposes a substantial overhead.
– But is worth it for expensive queries
– Optimizers often use simple heuristics for very cheap

queries, and perform exhaustive enumeration for more
expensive queries

Optimizing Nested Subqueries**
• Nested query example:

select customer_name
from borrower
where exists (select *

 from depositor
 where depositor.customer_name =

 borrower.customer_name)
• SQL conceptually treats nested subqueries in the where

clause as functions that take parameters and return a single
value or set of values
– Parameters are variables from outer level query that are

used in the nested subquery; such variables are called
correlation variables

Optimizing nested subqueries
• Conceptually, nested subquery is executed once for each

tuple in the cross-product generated by the outer level from
clause
– Such evaluation is called correlated evaluation
– Note: other conditions in where clause may be used to

compute a join (instead of a cross-product) before
executing the nested subquery

• Correlated evaluation may be quite inefficient since
– a large number of calls may be made to the nested query
– there may be unnecessary random I/O as a result

• SQL optimizers attempt to transform nested subqueries to
joins where possible, enabling use of efficient join techniques

Optimizing Nested Subqueries (Cont.)
• E.g.: earlier nested query can be rewritten as

select customer_name
from borrower, depositor
where depositor.customer_name = borrower.customer_name
– Note: the two queries generate different numbers of

duplicates (why?)
• Borrower can have duplicate customer-names
• Can be modified to handle duplicates correctly as we

will see
• In general, it is not possible/straightforward to move the

entire nested subquery from clause into the outer level
query from clause
– A temporary relation is created instead, and used in body

of outer level query

Optimizing Nested Subqueries (Cont.)
In general, SQL queries of the form below can be rewritten as shown
• Rewrite: select …

 from L1

 where P1 and exists (select *
 from L2

 where P2)
• To: create table t1 as

 select distinct V
 from L2

 where P2
1

 select …
 from L1, t1
 where P1 and P2

2

– P2
1 contains predicates in P2 that do not involve any correlation variables

– P2
2 reintroduces predicates involving correlation variables, with

relations renamed appropriately
– V contains all attributes used in predicates with correlation variables

Optimizing Nested Subqueries (Cont.)
• In our example, the original nested query would be

transformed to
 create table t1 as
 select distinct customer_name
 from depositor

 select customer_name
 from borrower, t1
 where t1.customer_name = borrower.customer_name

• The process of replacing a nested query by a query with a
join (possibly with a temporary relation) is called
decorrelation.

Optimizing nested subqueries
• Decorrelation is more complicated when

– the nested subquery uses aggregation, or
– when the result of the nested subquery is used to test for

equality, or
– when the condition linking the nested subquery to the

other
query is not exists,

– and so on.

Materialized Views**
• A materialized view is a view whose contents are computed

and stored.
• Consider the view

create view branch_total_loan(branch_name, total_loan) as
select branch_name, sum(amount)
from loan
group by branch_name

• Materializing the above view would be very useful if the
total loan amount is required frequently
– Saves the effort of finding multiple tuples and adding up

their amounts

Materialized View Maintenance
• The task of keeping a materialized view up-to-date with the

underlying data is known as materialized view
maintenance

• Materialized views can be maintained by recomputation on
every update

• A better option is to use incremental view maintenance
– Changes to database relations are used to compute

changes to the materialized view, which is then updated
• View maintenance can be done by

– Manually defining triggers on insert, delete, and update
of each relation in the view definition

– Manually written code to update the view whenever
database relations are updated

– Periodic recomputation (e.g. nightly)
– Above methods are directly supported by many database

systems
• Avoids manual effort/correctness issues

