CMSC 424 — Database design
Lecture 2:
Design, Modeling, Entity-Relationship

Book: Chap. 1 and 6
Mihai Pop

Administrative issues

TA: Sharath Srinivas
TA office hours: Mon 10-11:30, Wed 3-4:30, AVW 1112

Glue and Oracle accounts.
When you email me or TA: List CMSC424 in Subject line!!!

Policy amendment:
— Laptops OK but JUST FOR NOTE TAKING!

Today

« Data management challenges in a very simple application

— Why we can’t use a file system to do database management

« Data Modeling

— Going from conceptual requirements of a application to a
concrete data model

Example

« Simple Banking Application
— Need to store information about:
« Accounts
 Customers
— Need to support:
« ATM transactions
* Queries about the data

* |Instructive to see how a nalve solution will work

A file-system based solution

« Data stored in files in ASCII format
— #-separate files in /usr/db directory

— Jusr/db/accounts
Account Number # Balance
101 # 900
102 # 700

— Jusr/db/customers
Customer Name # Customer Address # Account Number
Johnson # 101 University Blvd # 101
Smith # 1300 K St # 102
Johnson # 101 University Blvd # 103

A file-system based solution

« Write application programs to support the operations
— In your favorite programming language

— To support withdrawals by a customer for amount $X from
account Y

« Scan /usr/db/accounts, and look for Y in the 1st field
« Subtract $X from the 2 field, and rewrite the file
— To support finding names of all customers on street Z

» Scan /usr/db/customers, and look for (partial) matches for Z in
the addess field

What's wrong with this solution ?

1. Data redundancy and inconsistency
No control of redundancy

aomer Address # Account Number
¥ 101

Customer Name
Johnson ¢ 101 UnlverS|ty Blvc

Smith # 1300

Johnson #@vaersny 8@103

EspeC|aIIy true when programs/data organization evolve over time

Inconsistencies
Data in different files may not agree
Very critical issue

What's wrong with this solution ?

2. Evolution of the database is hard
— Delete an account
* Will have to rewrite the entire file

— Add a new field to the accounts file, or

split the customers file in two parts:
« Rewriting the entire file least of the worries
« Will probably have to rewrite all the application programs

What's wrong with this solution ?

3. Difficulties in Data Retrieval

— No sophisticated tools for selective data access
« Access only the data for customer X
* Inefficient to scan the entire file
— Limited reuse
* Find customers who live in area code 301
« Unfortunately, no application program already written
* Write a new program every time ?

What's wrong with this solution ?

4. Semantic constraints

— Semantic integrity constraints become part of program code
» Balance should not fall below O

» Every program that modifies the balance will have to enforce this
constraint

— Hard to add new constraints or change existing ones

» Balance should not fall below 0 unless overdraft-protection
enabled

* Now what?
— Rewrite every program that modifies the balance ?

What's wrong with this solution ?

5. Atomicity problems because of failures

Jim transfers $100 from Acct #55 to Acct #376

lll
.
. L 4

: 2. If balance55 > $100 then
: a. balance55 := balance55 - 100
_ b. update balanceb5 on disk :
..................... E------c.--g-et-ba}a-n-ce-from--database-for-acct-#&?ﬁ--------E-------------------
CRASH i d. balance376 := balance376 + 100 :
: e. update balance376 on disk

....
--

Must be atomic
Do all the operations or none of the operations

What's wrong with this solution ?

6. Durability problems because of failures

Jim transfers $100 from Acct #55 to Acct #376

1. Get balance for acct #55
2. If balance55 > $100 then
a. balanceb5 := balanceb5 - 100
b. update balance55 on disk
c. get balance from database for acct #376
d. balance376 := balance376 + 100
e. update balance376 on disk
f. print receipt

After reporting success to the user, the changes
better be there when he checks tomorrow

What's wrong with this solution ?

/. Concurrent access anomalies

Joe@ATM1: Withdraws $100 from Acct #55
1. Get balance for acct #55
2. If balance55 > $100 then
a. balance55 := balance55 — 100
b. dispense cash

Cc. update balanceb55
Jane@ATM2: Withdraws $50 from Acct #55

1. Get balance for acct #55

2. If balance55 > $50 then
a. balance55 := balance55 — 50
b. dispense cash
C. update balanceb5

What's wrong with this solution ?

/. Concurrent access anomalies

Joe@ATM1: Withdraws $100 from Acct #55
1. Get balance for acct #55
2. If balance55 > $100 then
a. balance55 := balance55 — 100
b. dispense cash

Jane@ATM2: Withdraws $50 from Acct #55
1. Get balance for acct #55
2. If balance55 > $50 then
a. balance55 := balance55 — 50
b. dispense cash

c. update balance55 c. update balance55

Balance would only reflect one of the two operations
Bank loses money

What's wrong with this solution ?

8. Secuirity Issues

— Need fine grained control on who sees what

* Only the manager should have access to accounts with balance
more than $100,000

« How do you enforce that if there is only one accounts file ?

Database management provide an end-to-end solution to
all of these problems

Data Abstraction

* Probably the most important purpose of a DBMS

« Goal: Hiding low-level details from the users of the
system

« Through use of logical abstractions

Data Abstraction

What data users and

application programs View 1
see ?

View Level

View 2

View n

What data is stored ?
describe data properties such as
data semantics, data relationships

How data is actually stored ?
e.g. are we using disks ? Which
file system 7?

Logical
Level

Physical
Level

Data Abstraction: Banking Example

* Logical level:
— Provide an abstraction of tables

— Two tables can be accessed:

e accounts
— Columns: account number, balance

e customers
— Columns: name, address, account number
 View level:

— A teller (hon-manager) can only see a part of the accounts table
* Not containing high balance accounts

Data Abstraction: Banking Example

* Physical Level:
— Each table is stored in a separate ASCII file
— # separated fields

* |dentical to what we had before ?

— BUT the users are not aware of this
* They only see the tables
« The application programs are written over the tables abstraction

— Can change the physical level without affecting users

— In fact, can even change the logical level without affecting the teller

DBMS at a Glance

Data Modeling
Data Retrieval
Data Storage

Data Integrity

Architecture of a DBMS

System Components

& Interfaces

DML.: Data Manipulation Language
DDL: Data Definition Language
DBA: Data Base Administrator

naive users

Y

programmers

User interfaces/Forms

Y

DB experts

DBA

Y

Query '

Applic. programs

/ DB Design

/

DML precompiler processor DDL compiler
Y) datab
g - atabase
Application (object) code manager
Pl A
file “
manager
data dictionary
data files
L — e
\ 4/,

n=SWO

Data Modeling

« A data model is a collection of concepts for describing
data properties and domain knowledge:
— Data relationships
— Data semantics
— Data constraints

 We will discuss two models extensively in this class
— Entity-relationship Model
— Relational Model

* Probably discuss XML as well

Data Retrieval

* Query = Declarative data retrieval program
— describes what data to acquire, not how to acquire it
— Non-declarative:
» scan the accounts file

* look for number 55 in the 2 field
 subtract $50 from the 3 field

— Declarative (posed against the tables abstraction):

« Subtract $50 from the column named balance for the row corresponding to
account number 55 in the accounts table

 How to do it is not specified.
« Why?
— Easier to write
— More efficient to execute (why ?)

Data Storage

 Where and how to store data ?

— Main memory ?

« What if the database larger than memory size ?
— Disks ?

* How to move data between memory and disk ?
— Etc etc...

Data Integrity

 Manage concurrency and crashes
— JTransaction: A sequence of database actions enclosed within special tags
— Properties:

micity: Entire transaction or nothing

Cobhsistency: Transaction, executed completely, take database from one
conpistent state to another

Isojation: Concurrent transactions appear to run in isolation

Dufability: Effects of committed transactions are not lost
— CoNsisStency: Transaction programmer needs to guarantee that

« DBMS can do a few things, e.g., enforce constraints on the data
— Rest: DBMS guarantees

Data Integrity

« Semantic constraints
— Typically specified at the logical level
— E.qg. balance > 0

DBMS at a glance

Data Models

— Conceptual representation of the data
Data Retrieval

— How to ask questions of the database

— How to answer those questions

Data Storage

— How/where to store data, how to access it
Data Integrity

— Manage crashes, concurrency

— Manage semantic inconsistencies

Not fully disjoint categorization !!

Motivation

* You've just been hired by Bank of America as their DBA
for their online banking web site.

 You are asked to create a database that monitors:
— customers
— accounts
— loans
— branches
— transactions, ...

* Now what??!ll

Database Design Steps
Entity-relationship Model info %
Typically used for conceptual >

database design |
@tual DB desD
v

Th fee LeVGIS Of / Conceptual Data Model

Modeling T |
@al DB desig|>
|

Y
Logical Data Model

Relational Model

Typically used for logical @cal DB desigD
|
Y

database design

Physical Data Model

Entity-Relationship Model

 Two key concepts
— Entities:
* An object that exists and is distinguishable from other objects
— Examples: Bob Smith, BofA, CMSC424
« Have attributes (people have names and addresses)

* Form entity sets with other entities of the same type that share
the same properties

— Set of all people, set of all classes

* Entity sets may overlap
— Customers and Employees

Entity-Relationship Model

 Two key concepts

— Relationships:
* Relate 2 or more entities
— E.g. Bob Smith has account at College Park Branch

* Form relationship sets with other relationships of the same type
that share the same properties
— Customers have accounts at Branches

« Can have attributes:
— has account at may have an attribute start-date

e Can involve more than 2 entities
— Employee works at Branch at Job

ER Diagram: Starting Example

cust-id

customer account

cust-street

* Rectangles: entity sets
« Diamonds: relationship sets
« Ellipses: attributes

Next: Relationship Cardinalities

* We may know:
One customer can only open one account
OR
One customer can open multiple accounts

* Representing this is important
 Why ?
Better manipulation of data
If former, can store the account info in the customer table
Can enforce such a constraint

Application logic will have to do it; NOT GOOD

Remember: If not represented in conceptual model, the domain
knowledge may be lost

Relationships

relationship: an association among entities
— Joe Doe lives in the White House

relationship set: a collection of relationships of the same type
— PEOPLE LIVE in HOUSEs
— formally is a relation on n>=2 (possibly non distinct) entity sets

* {(e1,e2,....en) | e1e E1,...en € En}
« where (e1,e2,...,en) is a relationship

relationships can also have attributes (properties that have a single
value),

— e.g. LIVE has an attribute DATE-MOVED-IN (e.g. to store the
value the PERSON moved in the HOUSE (January 20t 2007) and
DATE-MOVED-OUT (e.g. January 19", 2005)

Mappings amongst relationships

0 1-1 (PERSONSs and IRS-RECORD)
0 1-many (PERSON and ACCOUNTS)

0 many-many (STUDENTs and
COURSESs)

one

one

many

one

many

many

Note arrow points to the one

Alternative Notation for Cardinality Limits

Cardinality limits can also express participation constraints

— e

0.* 1..1
customer loan

Our First Database Design

Application:

A library database that stores authors who have

written books about various subjects. The database
will also store info about libraries that carry books on

these subjects.

e

AUTHOR

SUBJECT

<

What's

Wrong? _ LIBRARY J

BOOK

Problems in our First Design

does not capture the fact that a library carries books of a specific
author

does not capture the fact that a library carries a specific book
does not capture the fact that an author has written a specific book
does not store which edition of the book the library has, how many

copies, etc.

AUTHOR

SusECT so0n
‘ T

LIBRARY

2" Attempt to the Library Design

AUTHOR

\ BOOK SUBJECT
e

LIBRARY

 Much better

