
CMSC 424 – Database design
Lecture 2:

Design, Modeling, Entity-Relationship

Book: Chap. 1 and 6

Mihai Pop

Administrative issues
• TA: Sharath Srinivas
• TA office hours: Mon 10-11:30, Wed 3-4:30, AVW 1112

• Glue and Oracle accounts.

• When you email me or TA: List CMSC424 in Subject line!!!

• Policy amendment:
– Laptops OK but JUST FOR NOTE TAKING!

Today

• Data management challenges in a very simple application

– Why we can’t use a file system to do database management

• Data Modeling
– Going from conceptual requirements of a application to a

concrete data model

Example

• Simple Banking Application
– Need to store information about:

• Accounts
• Customers

– Need to support:
• ATM transactions
• Queries about the data

• Instructive to see how a naïve solution will work

A file-system based solution

• Data stored in files in ASCII format
– #-separate files in /usr/db directory
– /usr/db/accounts

 Account Number # Balance
 101 # 900
 102 # 700
 …

– /usr/db/customers
 Customer Name # Customer Address # Account Number
 Johnson # 101 University Blvd # 101
 Smith # 1300 K St # 102
 Johnson # 101 University Blvd # 103
 …

A file-system based solution

• Write application programs to support the operations
– In your favorite programming language
– To support withdrawals by a customer for amount $X from

account Y
• Scan /usr/db/accounts, and look for Y in the 1st field
• Subtract $X from the 2nd field, and rewrite the file

– To support finding names of all customers on street Z
• Scan /usr/db/customers, and look for (partial) matches for Z in

the addess field
– …

What’s wrong with this solution ?

1. Data redundancy and inconsistency
 No control of redundancy

Customer Name # Customer Address # Account Number
 Johnson # 101 University Blvd # 101
 Smith # 1300 K St # 102
 Johnson # 101 University Blvd # 103
 …
Especially true when programs/data organization evolve over time

 Inconsistencies
 Data in different files may not agree
 Very critical issue

What’s wrong with this solution ?

2. Evolution of the database is hard
– Delete an account

• Will have to rewrite the entire file

– Add a new field to the accounts file, or
 split the customers file in two parts:

• Rewriting the entire file least of the worries
• Will probably have to rewrite all the application programs

What’s wrong with this solution ?

3. Difficulties in Data Retrieval
– No sophisticated tools for selective data access

• Access only the data for customer X
• Inefficient to scan the entire file

– Limited reuse
• Find customers who live in area code 301
• Unfortunately, no application program already written
• Write a new program every time ?

What’s wrong with this solution ?

4. Semantic constraints
– Semantic integrity constraints become part of program code

• Balance should not fall below 0
• Every program that modifies the balance will have to enforce this

constraint
– Hard to add new constraints or change existing ones

• Balance should not fall below 0 unless overdraft-protection
enabled

• Now what?
– Rewrite every program that modifies the balance ?

What’s wrong with this solution ?

5. Atomicity problems because of failures

Jim transfers $100 from Acct #55 to Acct #376

1. Get balance for acct #55
2. If balance55 > $100 then
 a. balance55 := balance55 - 100
 b. update balance55 on disk
 c. get balance from database for acct #376
 d. balance376 := balance376 + 100
 e. update balance376 on disk

CRASH

Must be atomic
 Do all the operations or none of the operations

What’s wrong with this solution ?

6. Durability problems because of failures

Jim transfers $100 from Acct #55 to Acct #376

1. Get balance for acct #55
2. If balance55 > $100 then
 a. balance55 := balance55 - 100
 b. update balance55 on disk
 c. get balance from database for acct #376
 d. balance376 := balance376 + 100
 e. update balance376 on disk
 f. print receipt

CRASH After reporting success to the user, the changes
better be there when he checks tomorrow

What’s wrong with this solution ?

7. Concurrent access anomalies
Joe@ATM1: Withdraws $100 from Acct #55
 1. Get balance for acct #55
 2. If balance55 > $100 then

a. balance55 := balance55 – 100
b. dispense cash
c. update balance55

Jane@ATM2: Withdraws $50 from Acct #55
 1. Get balance for acct #55
 2. If balance55 > $50 then

a. balance55 := balance55 – 50
b. dispense cash
c. update balance55

What’s wrong with this solution ?

7. Concurrent access anomalies
Joe@ATM1: Withdraws $100 from Acct #55
 1. Get balance for acct #55
 2. If balance55 > $100 then

a. balance55 := balance55 – 100
b. dispense cash

c. update balance55

Jane@ATM2: Withdraws $50 from Acct #55
 1. Get balance for acct #55
 2. If balance55 > $50 then

a. balance55 := balance55 – 50
b. dispense cash
c. update balance55

Balance would only reflect one of the two operations
 Bank loses money

What’s wrong with this solution ?

8. Security Issues
– Need fine grained control on who sees what

• Only the manager should have access to accounts with balance
more than $100,000

• How do you enforce that if there is only one accounts file ?

 Database management provide an end-to-end solution to
all of these problems

Data Abstraction

• Probably the most important purpose of a DBMS
• Goal: Hiding low-level details from the users of the

system

• Through use of logical abstractions

Data Abstraction

Logical
Level

Physical
Level

View Level

View 1 View 2 View n…

How data is actually stored ?
 e.g. are we using disks ? Which
 file system ?

What data is stored ?
 describe data properties such as
 data semantics, data relationships

What data users and
application programs
see ?

Data Abstraction: Banking Example

• Logical level:
– Provide an abstraction of tables
– Two tables can be accessed:

• accounts
– Columns: account number, balance

• customers
– Columns: name, address, account number

• View level:
– A teller (non-manager) can only see a part of the accounts table

• Not containing high balance accounts

Data Abstraction: Banking Example

• Physical Level:
– Each table is stored in a separate ASCII file
– # separated fields

• Identical to what we had before ?
– BUT the users are not aware of this

• They only see the tables
• The application programs are written over the tables abstraction

– Can change the physical level without affecting users

– In fact, can even change the logical level without affecting the teller

DBMS at a Glance

1. Data Modeling

2. Data Retrieval

3. Data Storage

4. Data Integrity

naïve users

Architecture of a DBMS

System Components
 & Interfaces

DML: Data Manipulation Language
DDL: Data Definition Language
DBA: Data Base Administrator

DB Design

Application (object) code database
manager

query
processorDML precompiler DDL compiler

Applic. programs

User interfaces/Forms Query

programmers DB experts
DBA

data files

data dictionary

file
manager

D
B
M
S

Data Modeling

• A data model is a collection of concepts for describing
data properties and domain knowledge:
– Data relationships
– Data semantics
– Data constraints

• We will discuss two models extensively in this class
– Entity-relationship Model
– Relational Model

• Probably discuss XML as well

Data Retrieval

• Query = Declarative data retrieval program
– describes what data to acquire, not how to acquire it
– Non-declarative:

• scan the accounts file
• look for number 55 in the 2nd field
• subtract $50 from the 3rd field

– Declarative (posed against the tables abstraction):
• Subtract $50 from the column named balance for the row corresponding to

account number 55 in the accounts table
• How to do it is not specified.

• Why ?
– Easier to write
– More efficient to execute (why ?)

Data Storage

• Where and how to store data ?
– Main memory ?

• What if the database larger than memory size ?
– Disks ?

• How to move data between memory and disk ?
– Etc etc…

Data Integrity

• Manage concurrency and crashes
– Transaction: A sequence of database actions enclosed within special tags
– Properties:

• Atomicity: Entire transaction or nothing
• Consistency: Transaction, executed completely, take database from one

consistent state to another
• Isolation: Concurrent transactions appear to run in isolation
• Durability: Effects of committed transactions are not lost

– Consistency: Transaction programmer needs to guarantee that
• DBMS can do a few things, e.g., enforce constraints on the data

– Rest: DBMS guarantees

Data Integrity

• Semantic constraints
– Typically specified at the logical level
– E.g. balance > 0

DBMS at a glance

• Data Models
– Conceptual representation of the data

• Data Retrieval
– How to ask questions of the database
– How to answer those questions

• Data Storage
– How/where to store data, how to access it

• Data Integrity
– Manage crashes, concurrency
– Manage semantic inconsistencies

• Not fully disjoint categorization !!

Motivation

• You’ve just been hired by Bank of America as their DBA
for their online banking web site.

• You are asked to create a database that monitors:
– customers
– accounts
– loans
– branches
– transactions, …

• Now what??!!!

 Database Design Steps

Three Levels of
Modeling

info

Conceptual Data Model

Logical Data Model

Physical Data Model

 Conceptual DB design

 Logical DB design

 Physical DB design

Entity-relationship Model
 Typically used for conceptual
 database design

Relational Model
 Typically used for logical
 database design

Entity-Relationship Model

• Two key concepts
– Entities:

• An object that exists and is distinguishable from other objects
– Examples: Bob Smith, BofA, CMSC424

• Have attributes (people have names and addresses)
• Form entity sets with other entities of the same type that share

the same properties
– Set of all people, set of all classes

• Entity sets may overlap
– Customers and Employees

Entity-Relationship Model

• Two key concepts
– Relationships:

• Relate 2 or more entities
– E.g. Bob Smith has account at College Park Branch

• Form relationship sets with other relationships of the same type
that share the same properties

– Customers have accounts at Branches

• Can have attributes:
– has account at may have an attribute start-date

• Can involve more than 2 entities
– Employee works at Branch at Job

ER Diagram: Starting Example

• Rectangles: entity sets
• Diamonds: relationship sets
• Ellipses: attributes

customer has

cust-street

cust-id

cust-name

cust-city

account

balance

number
access-date

Next: Relationship Cardinalities

• We may know:
One customer can only open one account
 OR
One customer can open multiple accounts

• Representing this is important
• Why ?

 Better manipulation of data
 If former, can store the account info in the customer table

 Can enforce such a constraint
 Application logic will have to do it; NOT GOOD

 Remember: If not represented in conceptual model, the domain
knowledge may be lost

Relationships

• relationship: an association among entities
– Joe Doe lives in the White House

• relationship set: a collection of relationships of the same type
– PEOPLE LIVE in HOUSEs
– formally is a relation on n>=2 (possibly non distinct) entity sets

• {(e1,e2,…,en) | e1ε E1,…en ε En}
• where (e1,e2,…,en) is a relationship

• relationships can also have attributes (properties that have a single
value),
– e.g. LIVE has an attribute DATE-MOVED-IN (e.g. to store the

value the PERSON moved in the HOUSE (January 20th, 2001) and
DATE-MOVED-OUT (e.g. January 19th, 2005)

Mappings amongst relationships

◆ 1-1 (PERSONs and IRS-RECORD)

◆ 1-many (PERSON and ACCOUNTs)

◆ many-many (STUDENTs and
COURSEs)

one

many

many

one

one

many

Note arrow points to the one

Alternative Notation for Cardinality Limits

Cardinality limits can also express participation constraints

Our First Database Design
Application:
 A library database that stores authors who have

written books about various subjects. The database
will also store info about libraries that carry books on
these subjects.

WROTE-ON

INDEX

CARRY

SUBJECTSNAME

LIBRARYLNAME

AUTHOR

BDATENAMESS# TEL

BOOK
ISBN

TITLE

What’s
wrong?

Problems in our First Design
• does not capture the fact that a library carries books of a specific

author
• does not capture the fact that a library carries a specific book
• does not capture the fact that an author has written a specific book
• does not store which edition of the book the library has, how many

copies, etc.

WROTE-ON

INDEX

CARRY

SUBJECTSNAME

LIBRARYLNAME

AUTHOR

BDATENAMESS# TEL

BOOK
ISBN

TITLE

2nd Attempt to the Library Design

• Much better

WROTE

INDEX SUBJECT SNAME

LIBRARYLNAME

BOOK
ISBN

TITLE

IN-STOCK
QUANTITY

EDITION

AUTHOR

BDATENAMESS# TEL

