
CMSC 424 – Database design
Lecture 20

Join size prediction
Concurrency/recovery

Mihai Pop

Admin

Job Description

Software Developer

This Software Developer position is located at the U.S. Army Medical Research and Materiel Command (MRMC)
Bioinformatics Cell (BIC), Ft. Detrick, MD. Applicants should have a Bachelors or Masters degree in computer
science, engineering, or a related discipline and an interest in pursuing the development of software tools that
directly support the mission of the MRMC life scientists. In particular, the Software Developer supports
biomedical research by transitioning proof of concept software prototypes to production quality systems for
research applications. This position requires substantial experience developing Web enabled client/server
systems with a database backend. A strong knowledge of servelets, CGI, HTML, JavaScript, SQL, XML, Java
applets, and GNU tools is desirable. Must know C and possess good knowledge of OO, MySQL/Oracle, and
Python/Ruby/LISP. Operating system knowledge should include Unix variants (BSD’s, GNU/Linux) and
Windows OS. The Software Developer will also help maintain the BIC’s IT infrastructure. Experience with
installing and maintaining UNIX/LINUX based server machines, and a working knowledge of Local Area
Networks, MS Exchange based mail servers, DNS servers and CISCO firewalls is a plus.

Please submit resume to:
Jaques Reifman, Ph.D.
Senior Research Scientist
U.S. Army Medical Research and Material Command
Ft. Detrick, MD
Email: reifman@bioanalysis.org
Phone: 301-619-7915
www.bioanalysis.org

Statistical Information for Cost Estimation
• nr: number of tuples in a relation r.
• br: number of blocks containing tuples of r.
• lr: size of a tuple of r.
• fr: blocking factor of r — i.e., the number of tuples of r that fit

into one block.
• V(A, r): number of distinct values that appear in r for

attribute A; same as the size of ∏A(r).
• If tuples of r are stored together physically in a file, then:

• Also: instead of V(A,r) can store a histogram

=
rf
rnrb

Selection Size Estimation
• σA=v(r)

• nr / V(A,r) : number of records that will satisfy the selection
• Equality condition on a key attribute: size estimate = 1

• σA≤V(r) (case of σA ≥ V(r) is symmetric)
– Let c denote the estimated number of tuples satisfying the condition.
– If min(A,r) and max(A,r) are available in catalog

• c = 0 if v < min(A,r)

• c =

– If histograms available, can refine above estimate
– In absence of statistical information c is assumed to be nr / 2.

nr .
v−min A , r

max A , r −min A , r

Size Estimation of Complex Selections
• The selectivity of a condition θi is the probability that a tuple

in the relation r satisfies θi .
– If si is the number of satisfying tuples in r, the selectivity

of θi is given by si /nr.
• Conjunction: σθ1∧ θ2∧. . . ∧ θn (r). Assuming indepdence, estimate of

tuples in the result is:

• Disjunction:σθ1∨ θ2 ∨. . . ∨ θn (r). Estimated number of tuples:

• Negation: σ¬θ(r). Estimated number of tuples:
nr – size(σθ(r))

n
r

n
r n

sssn ∗∗∗∗ . . . 21

−∗∗−∗−−∗)1(...)1()1(1 21

r

n

rr
r n

s
n
s

n
sn

Join Operation: Running Example
Running example:

depositor customer
Catalog information for join examples:
• ncustomer = 10,000.
• fcustomer = 25, which implies that

bcustomer =10000/25 = 400.
• ndepositor = 5000.
• fdepositor = 50, which implies that

bdepositor = 5000/50 = 100.
• V(customer_name, depositor) = 2500, which implies that , on average,

each customer has two accounts.
– Also assume that customer_name in depositor is a foreign key on

customer.
– V(customer_name, customer) = 10000 (primary key!)

h

Estimation of the Size of Joins
• The Cartesian product r x s contains nr .ns tuples; each tuple

occupies sr + ss bytes.
• If R ∩ S = ∅, then r s is the same as r x s.
• If R ∩ S is a key for R, then a tuple of s will join with at most

one tuple from r
– therefore, the number of tuples in r s is no greater than

the number of tuples in s.
• If R ∩ S in S is a foreign key in S referencing R, then the

number of tuples in r s is exactly the same as the number
of tuples in s.

• The case for R ∩ S being a foreign key referencing S is
symmetric.

• In the example query depositor customer, customer_name in
depositor is a foreign key of customer
– hence, the result has exactly ndepositor tuples, which is 5000

Estimation of the Size of Joins (Cont.)
• If R ∩ S = {A} is not a key for R or S.

If we assume that every tuple t in R produces tuples in R S,
the number of tuples in R S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more
accurate one.

• Can improve on above if histograms are available
– Use formula similar to above, for each cell of histograms

on the two relations

),(sAV
nn sr ∗

),(rAV
nn sr ∗

Estimation of the Size of Joins (Cont.)
• Compute the size estimates for depositor customer without

using information about foreign keys:
– V(customer_name, depositor) = 2500, and

V(customer_name, customer) = 10000
– The two estimates are 5000 * 10000/2500 - 20,000 and 5000

* 10000/10000 = 5000
– We choose the lower estimate, which in this case, is the

same as our earlier computation using foreign keys.

Size Estimation for Other Operations
• Projection: estimated size of ∏A(r) = V(A,r)
• Aggregation : estimated size of AgF(r) = V(A,r)
• Set operations

– For unions/intersections of selections on the same
relation: rewrite and use size estimate for selections
• E.g. σθ1 (r) ∪ σθ2 (r) can be rewritten as σθ1 σθ2 (r)

– For operations on different relations:
• estimated size of r ∪ s = size of r + size of s.
• estimated size of r ∩ s = minimum size of r and size of

s.
• estimated size of r – s = r.
• All the three estimates may be quite inaccurate, but

provide upper bounds on the sizes.

Transactions, concurrency, recovery
• Until now we learned

– how to design an efficient database
– how to quickly answer queries

• Next: how we ensure database is consistent:
– equipment failures (disk, power, internet...)
– concurrent accesses

Overview
• Transaction: A sequence of database actions enclosed within special

tags

• Properties:

– Atomicity: Entire transaction or nothing

– Consistency: Transaction, executed completely, takes database
from one consistent state to another

– Isolation: Concurrent transactions appear to run in isolation

– Durability: Effects of committed transactions are not lost

• Consistency: Transaction programmer needs to guarantee that

• DBMS can do a few things, e.g., enforce constraints on the data

• Rest: DBMS guarantees

Assumptions and Goals
• Assumptions:

– The system can crash at any time
– Similarly, the power can go out at any point

• Contents of the main memory won’t survive a crash, or power
outage

– BUT… disks are durable. They might stop, but data is not lost
– Disks only guarantee atomic sector writes, nothing more
– Transactions are by themselves consistent

• Goals:
– Guaranteed durability, atomicity
– As much concurrency as possible, while not compromising

isolation and/or consistency
• Two transactions updating the same account balance… NO
• Two transactions updating different account balances… YES

Next…
• States of a transaction
• A simple solution called shadow copy

– Satisfies Atomicity, Durability, and Consistency, but no
Concurrency

– Very inefficient

Transaction states

Shadow Copy
• Make updates on a copy of the database.
• Switch pointers atomically after done.

– Some text editors work this way

Shadow Copy
• Atomicity:

– As long as the DB pointer switch is atomic.
• Okay if DB pointer is in a single block

• Concurrency:
– No.

• Isolation:
– No concurrency, so isolation is guaranteed.

• Durability:
– Assuming disk is durable (we will assume this for now).

• Very inefficient:
– Databases tend to be very large. Making extra copies not

feasible. Further, no concurrency.

Next…
• Concurrency control schemes

– A CC scheme is used to guarantee that concurrency does
not lead to problems

– For now, we will assume durability is not a problem
• So no crashes
• Though transactions may still abort

• Schedules

• When is concurrency okay ?
– Serial schedules
– Serializability

A Schedule

T1
read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Transactions:
 T1: transfers $50 from A to B
 T2: transfers 10% of A to B
Database constraint: A + B is constant (checking+saving accts)

Effect: Before After
 A 100 45
 B 50 105

Each transaction obeys the
constraint.

This schedule does too.

Schedules
• A schedule is simply a (possibly interleaved) execution sequence of

transaction instructions

• Serial Schedule: A schedule in which transaction appear one after the
other
– ie., No interleaving

• Serial schedules satisfy isolation and consistency
– Since each transaction by itself does not introduce inconsistency

Example Schedule
• Another “serial” schedule:

T1

read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2
read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Consistent ?
 Constraint is satisfied.

Since each Xion is consistent, any
serial schedule must be consistent

Effect: Before After
 A 100 40
 B 50 110

Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect: Before After
 A 100 45
 B 50 105

Consistent.
So this schedule is okay too.

Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect: Before After
 A 100 45
 B 50 105

Further, the effect same as the
serial schedule 1.

Called serializable

Example Schedules (Cont.)
 A “bad” schedule

Not consistent

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

Effect: Before After
 A 100 50
 B 50 60

Serializability
• A schedule is called serializable if its final effect is the same

as that of a serial schedule

• Serializability schedule is fine and does not result in
inconsistent database
– Since serial schedules are fine

• Non-serializable schedules are unlikely to result in
consistent databases

• We will ensure serializability
– Typically relaxed in real high-throughput environments

Serializability
• Not possible to look at all n! serial schedules to check if the

effect is the same
– Instead we ensure serializability by allowing or not

allowing certain schedules

• Conflict serializability

• View serializability

• View serializability allows more schedules

