
CMSC 424 – Database design
Lecture 21

Concurrency/recovery

Mihai Pop

Admin
• Office hours tomorrow @ 10am in AVW 3223

Serializability
• Not possible to look at all n! serial schedules to check if the

effect is the same
– Instead we ensure serializability by allowing or not

allowing certain schedules

• Conflict serializability

• View serializability

• View serializability allows more schedules

Conflict Serializability
• Two read/write instructions “conflict” if

– They are by different transactions
– They operate on the same data item
– At least one is a “write” instruction

• Why do we care ?
– If two read/write instructions don’t conflict, they can be

“swapped” without any change in the final effect
– However, if they conflict they CAN’T be swapped

without changing the final effect

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)

B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
 A 100 45
 B 50 105

Effect: Before After
 A 100 45
 B 50 105

==

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)

B = B+ tmp
write(B)

Effect: Before After
 A 100 45
 B 50 105

Effect: Before After
 A 100 45
 B 50 55

! ==

Conflict Serializability
• Conflict-equivalent schedules:

– If S can be transformed into S’ through a series of swaps,
S and S’ are called conflict-equivalent

– conflict-equivalent guarantees same final effect on the database

• A schedule S is conflict-serializable if it is conflict-equivalent
to a serial schedule

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
 A 100 45
 B 50 105

Effect: Before After
 A 100 45
 B 50 105

==

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
 A 100 45
 B 50 105

Effect: Before After
 A 100 45
 B 50 105

==

Example Schedules (Cont.)
 A “bad” schedule

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

X

Y
Can’t move Y below X
 read(B) and write(B) conflict

Other options don’t work either

So: Not Conflict Serializable

Serializability
• In essence, following set of instructions is not conflict-

serializable:

View-Serializability
• Similarly, following not conflict-serializable

• BUT, it is serializable
– Intuitively, this is because the conflicting write instructions

don’t matter
– The final write is the only one that matters

• View-serializability allows these
– Read up (chap. 15)

Other notions of serializability
• Not conflict-serializable or view-serializable, but serializable
• Mainly because of the +/- only operations

– Requires analysis of the actual operations, not just
read/write operations

• Most high-performance transaction systems will allow these

Testing for conflict-serializability
• Given a schedule, determine if it is conflict-serializable

• Draw a precedence-graph over the transactions
– A directed edge from T1 and T2, if they have conflicting

instructions, and T1’s conflicting instruction comes first

• If there is a cycle in the graph, not conflict-serializable
– Can be checked in at most O(n+e) time, where n is the

number of vertices, and e is the number of edges
• If there is none, conflict-serializable

• Testing for view-serializability is NP-hard.

Example Schedule (Schedule A) + Precedence Graph
T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

T3

T4

T1 T2

Recap
• We discussed:

– Serial schedules, serializability
– Conflict-serializability, view-serializability
– How to check for conflict-serializability

• We haven’t discussed:
– How to guarantee serializability ?

• Allowing transactions to run, and then aborting them if
the schedules wasn’t serializable is clearly not the way
to go

– We instead use schemes to guarantee that the schedule
will be conflict-serializable

– Also, recoverability ?

Recoverability
• Serializability is good for consistency

• But what if transactions fail ?
– T2 has already committed

• A user might have been notified
– Now T1 abort creates a problem

• T2 has seen its effect, so just
 aborting T1 is not enough.
T2 must be aborted as well
(and possibly restarted)

• But T2 is committed

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)
ABORT

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
COMMIT

Recoverability
• Recoverable schedule: If T1 has read something T2 has

written, T2 must commit before T1
– Otherwise, if T1 commits, and T2 aborts, we have a

problem

• Cascading rollbacks: If T10 aborts, T11 must abort, and
hence T12 must abort and so on.

Recoverability
• Dirty read: Reading a value written by a transaction that

hasn’t committed yet
• Cascadeless schedules:

– A transaction only reads committed values.
– So if T1 has written A, but not committed it, T2 can’t read

it.
• No dirty reads

• Cascadeless  No cascading rollbacks
– That’s good
– We will try to guarantee that as well

Recap
• We discussed:

– Serial schedules, serializability
– Conflict-serializability, view-serializability
– How to check for conflict-serializability
– Recoverability, cascade-less schedules

• We haven’t discussed:
– How to guarantee serializability ?

• Allowing transactions to run, and then aborting them if
the schedules wasn’t serializable is clearly not the way
to go

– We instead use schemes to guarantee that the schedule
will be conflict-serializable

Concurrency control

Approach, Assumptions etc..
• Approach

– Guarantee conflict-serializability by allowing certain
types of concurrency
• Lock-based

• Assumptions:
– Durability is not a problem

• So no crashes
• Though transactions may still abort

• Goal:
– Serializability
– Minimize the bad effect of aborts (cascade-less schedules

only)

Lock-based Protocols
• A transaction must get a lock before operating on the data

• Two types of locks:
– Shared (S) locks (also called read locks)

• Obtained if we want to only read an item
– Exclusive (X) locks (also called write locks)

• Obtained for updating a data item

Lock instructions
• New instructions

- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock

Example schedule:
read(B)
B B-50
write(B)
read(A)
A A + 50
write(A)

read(A)
read(B)
display(A+B)

T1 T2

Lock instructions
• New instructions

- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock

Example schedule:
lock-X(B)
read(B)
B B-50
write(B)
unlock(B)
lock-X(A)
read(A)
A A + 50
write(A)
unlock(A)

lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(A+B)

T1 T2

Lock-based Protocols
• Lock requests are made to the concurrency control manager

– It decides whether to grant a lock request

• T1 asks for a lock on data item A, and T2 currently has a

lock on it ?
– Depends

• If compatible, grant the lock, otherwise T1 waits in a queue.

NO-Exclusive

NOExclusiveShared

 YESSharedShared

Should allow ?T1 lock typeT2 lock type

Lock-based Protocols
• How do we actually use this to guarantee

serializability/recoverability ?
– Not enough just to take locks when you need to

read/write something

lock-X(B)
read(B)
B B-50
write(B)
unlock(B)

lock-X(A)
read(A)
A A + 50
write(A)
unlock(A)

T1

lock-X(A), lock-X(B)
A = A-50
B = B+50
unlock(A), unlock(B)

2-Phase Locking Protocol (2PL)
• Phase 1: Growing phase

– Transaction may obtain locks
– But may not release them

• Phase 2: Shrinking phase
– Transaction may only release locks

• Can be shown that this achieves conflict-serializability
– lock-point: the time at which a transaction acquired

last lock
– if lock-point(T1) < lock-point(T2), there can’t

be an edge from T2 to T1 in the precedence graph

lock-X(B)
read(B)
B B-50
write(B)
unlock(B)

lock-X(A)
read(A)
A A + 50
write(A)
unlock(A)

T1

2 Phase Locking
• Example: T1 in 2PL

lock-X(B)

read(B)

B  B - 50

write(B)

lock-X(A)

read(A)

A  A - 50

write(A)

unlock(B)

unlock(A)

T1

{Growing phase

{Shrinking phase

2 Phase Locking
• Guarantees conflict-serializability, but not cascade-less

recoverability

lock-S(A)
read(A)
Commit

lock-X(A)
read(A)
write(A)
unlock(A)
Commit

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

T3T2T1

2 Phase Locking
• Guarantees conflict-serializability, but not cascade-less

recoverability

• Guaranteeing just recoverability:
– If T2 reads a dirty data of T1 (ie, T1 has not committed),

then T2 can’t commit unless T1 either commits or aborts
– If T1 commits, T2 can proceed with committing
– If T1 aborts, T2 must abort

• So cascades still happen

Strict 2PL

Strict 2PL
will not
allow that

• Release exclusive locks only at the very end, just before
commit or abort

lock-S(A)
read(A)
Commit

lock-X(A)
read(A)
write(A)
unlock(A)
Commit

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

T3T2T1

Works. Guarantees cascade-less and recoverable schedules.

Strict 2PL
• Release exclusive locks only at the very end, just before

commit or abort
– Read locks are not important

• Rigorous 2PL: Release both exclusive and read locks only at
the very end
– The serializability order === the commit order
– More intuitive behavior for the users

• No difference for the system

Strict 2PL
• Lock conversion:

– Transaction might not be sure what it needs a write lock
on

– Start with a S lock

– Upgrade to an X lock later if needed

– Doesn’t change any of the other properties of the protocol

Implementation of Locking
• A separate process, or a separate module

• Uses a lock table to keep track of currently assigned locks and
the requests for locks
– Read up in the book (chap. 16)

Recap
• Concurrency Control Scheme

– A way to guarantee serializability, recoverability etc

• Lock-based protocols
– Use locks to prevent multiple transactions accessing the

same data items

• 2 Phase Locking
– Locks acquired during growing phase, released during

shrinking phase

• Strict 2PL, Rigorous 2PL

