
CMSC 424 – Database design
Lecture 22

Concurrency/recovery

Mihai Pop

Admin
• Signup sheet for project presentations

Recap...1
• ACID properties:

– Atomicity (recovery)
– Consistency (transaction design, , concurrency control,

recovery)
– Isolation (concurrency control)
– Durability (recovery)

Recap
• Concurrency Control Scheme

– A way to guarantee serializability, recoverability etc

• Lock-based protocols
– Use locks to prevent multiple transactions accessing the

same data items

• 2 Phase Locking
– Locks acquired during growing phase, released during

shrinking phase

• Strict 2PL, Rigorous 2PL

More Locking Issues: Deadlocks
• No xction proceeds:
Deadlock

- T1 waits for T2 to unlock A
- T2 waits for T1 to unlock B

lock-S(A)

read(A)

lock-S(B)

lock-X(B)

read(B)

B B-50

write(B)

lock-X(A)

T2T1

Rollback transactions
Can be costly...

2PL and Deadlocks
• 2PL does not prevent deadlock

– Strict doesn’t either

• > 2 xctions involved?
- Rollbacks expensive

lock-S(A)

read(A)

lock-S(B)

lock-X(B)

read(B)

B B-50

write(B)

lock-X(A)

T2T1

Preventing deadlocks
• Solution 1: A transaction must acquire all locks before it

begins
– Not acceptable in most cases

• Solution 2: A transaction must acquire locks in a particular
order over the data items
– Also called graph-based protocols

• Solution 3: Use time-stamps; say T1 is older than T2
– wait-die scheme: T1 will wait for T2. T2 will not wait for T1;

instead it will abort and restart
– wound-wait scheme: T1 will wound T2 (force it to abort) if it

needs a lock that T2 currently has; T2 will wait for T1.
• Solution 4: Timeout based

– Transaction waits a certain time for a lock; aborts if it
doesn’t get it by then

Deadlock detection and recovery
• Instead of trying to prevent deadlocks, let them happen and

deal with them if they happen
• How do you detect a deadlock?

– Wait-for graph
– Directed edge from Ti to Tj

• Ti waiting for Tj

X(W)

X(Z)

S(V)

X(V)

S(W)
S(V)

T4T3T2T1

T1

T2

T4

T3

Suppose T4 requests lock-S(Z)....

Dealing with Deadlocks
• Deadlock detected, now what ?

– Will need to abort some transaction
– Prefer to abort the one with the minimum work done so

far
– Possibility of starvation

• If a transaction is aborted too many times, it may be
given priority in continuing

Locking granularity
• Locking granularity

– What are we taking locks on ? Tables, tuples, attributes ?

• Coarse granularity
– e.g. take locks on tables
– less overhead (the number of tables is not that high)
– very low concurrency

• Fine granularity
– e.g. take locks on tuples
– much higher overhead
– much higher concurrency
– What if I want to lock 90% of the tuples of a table ?

• Prefer to lock the whole table in that case

Granularity Hierarchy

 The highest level in the example hierarchy is the entire database.
 The levels below are of type area, file or relation and record in that order.
 Can lock at any level in the hierarchy

Granularity Hierarchy
• New lock mode, called intentional locks

– Declare an intention to lock parts of the subtree below a node
– IS: intention shared

• The lower levels below may be locked in the shared mode
– IX: intention exclusive
– SIX: shared and intention-exclusive

• The entire subtree is locked in the shared mode, but I might
also want to get exclusive locks on the nodes below

• Protocol:
– If you want to acquire a lock on a data item, all the ancestors

must be locked as well, at least in the intentional mode
– So you always start at the top root node

Granularity Hierarchy
(1) Want to lock F_a in shared mode, DB and A1 must be

locked in at least IS mode (but IX, SIX, S, X are okay too)
(2) Want to lock rc1 in exclusive mode, DB, A2,Fc must be

locked in at least IX mode (SIX, X are okay too)

Parent Child can be
locked in locked in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
[S, IS] not necessary
X, IX, [SIX]
none

Granularity Hierarchy

Compatibility Matrix with
 Intention Lock Modes

• The compatibility matrix (which locks can be present
simultaneously on the same data item) for all lock modes is:

IS IX S S IX X

IS

IX

S

S IX

X

×

×

×

× × × ×

×× ×

× ×

×

×

××
holder

requestor

Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(IX)

T2(X)

Examples
R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(IX)

T1(IX)

T1(X)

R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(IS)

T1(S)

R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(SIX)

T1(IX)

T1(X)

Can T2 access object f2.2 in X mode?
What locks will T2 get?

Examples
• T1 scans R, and updates a few tuples:

– T1 gets an SIX lock on R, then repeatedly gets an S lock on
tuples of R, and occasionally upgrades to X on the tuples.

• T2 uses an index to read only part of R:
– T2 gets an IS lock on R, and repeatedly gets an S lock on

tuples of R.
• T3 reads all of R:

– T3 gets an S lock on R.
– OR, T3 could behave like T2; can
use lock escalation to decide which.

-- IS IX

--

IS

IX

√

√

√

√ √

√

S X

√

√

S

X

√ √

√

√

√

√ √

√

Recap, Next….
• Deadlocks

– Detection, prevention, recovery

• Locking granularity
– Arranged in a hierarchy
– Intentional locks

• Next…
– Brief discussion of some other concurrency schemes

Other CC Schemes
• Time-stamp based

– Transactions are issued time-stamps when they enter the
system

– The time-stamps determine the serializability order
– So if T1 entered before T2, then T1 should be before T2 in the

serializability order
– Say timestamp(T1) < timestamp(T2)
– If T1 wants to read data item A

• If any transaction with larger time-stamp wrote that data
item, then this operation is not permitted, and T1 is aborted

– If T1 wants to write data item A
• If a transaction with larger time-stamp already read that

data item or written it, then the write is rejected and T1 is
aborted

– Aborted transaction are restarted with a new timestamp
• Possibility of starvation

Other CC Schemes
• Time-stamp based

– As discussed here, has too many problems
• Starvation
• Non-recoverable
• Cascading rollbacks required

– Most can be solved fairly easily
• Read up

– Remember: We can always put more and more
restrictions on what the transactions can do to ensure
these things
• The goal is to find the minimal set of restrictions to as

to not hinder concurrency

Other CC Schemes
• Optimistic concurrency control

– Also called validation-based

– Intuition
• Let the transactions execute as they wish
• At the very end when they are about to commit, check

if there might be any problems/conflicts etc
–If no, let it commit
–If yes, abort and restart

– Optimistic: The hope is that there won’t be too many
problems/aborts

• Rarely used any more

The “Phantom” problem
• An interesting problem that comes up for dynamic

databases
• Schema: accounts(branchname, acct_no, balance, …)
• Transaction 1: Find the maximum balance in each branch
• Transaction 2: Insert <“branch1”, acctX, $10000000>, and

delete <“branch2”, acctY, $100000000>.
– Both maximum entries in the corresponding branches

• Execution sequence:
– T1 locks all tuples corresponding to “branch1”, finds the

maximum balance and releases the locks
– T2 does its two insert/deletes
– T1 locks all tuples corresponding to “branch2”, finds the

maximum balance and releases the locks
• Not serializable

