

Parallel/Distributed Parallel/Distributed
DatabasesDatabases

XMLXML

Mihai Pop
CMSC424

most slides courtesy of Amol Deshpande

AdminAdmin

■ Project due today

■ Sign up for demo, if you haven't already

■ myphpbib.sourceforge.net - example publication DB and API

SQL injection (security)SQL injection (security)

http://www.securiteam.com/securityreviews/5DP0N1P76E.html

TopicsTopics

■ Today
 Database system architectures (Chap. 20)

 Client-server

 Parallel and Distributed Systems (Chap. 20, 21, 22)

 Object Oriented, Object Relational (Chap. 9)

 XML (Chap. 10)

■ Next class…
 Data warehouses, Information Retrieval, Database Tuning ?

Database System ArchitecturesDatabase System Architectures

■ Centralized single-user

■ Client-Server Architectures
 Connected over a network typically

 Back-end: manages the database

 Front-end(s): Forms, report-writes, sqlplus

 How they talk to each other ?

 ODBC:

– Interface standard for talking to the server in C

 JDBC:

– In Java

 Transaction servers vs. data servers

Database System ArchitecturesDatabase System Architectures

Parallel DatabasesParallel Databases

■ Why ?
 More transactions per second, or less time per query

 Throughput vs. Response Time

 Speedup vs. Scaleup

■ Database operations are embarrassingly parallel
 E.g. Consider a join between R and S on R.b = S.b

■ But, perfect speedup doesn’t happen
 Start-up costs (starting 1000s of jobs is expensive)

 Interference (e.g. shared disk)

 Skew (not all jobs are the same size)

Parallel DatabasesParallel Databases

■ Shared-nothing vs. shared-memory vs. shared-disk

Parallel DatabasesParallel Databases

Distributed
transactions are
complicated
(deadlock
detection etc);

Transactions
complicated;
natural fault-
tolerance.

Cache-coherency
an issue

Notes

Main use

Scalability ?

Communication
between
processors

EverywhereNot used very
often

Low degrees of
parallelism

Very very
scalable

Not very scalable
(disk interconnect
is the bottleneck)

Not beyond 32 or
64 or so (memory
bus is the
bottleneck)

Over a LAN, so
slowest

Disk interconnect
is very fast

Extremely fast

Shared NothingShared DiskShared Memory

Distributed SystemsDistributed Systems

■ Over a wide area network

■ Typically not done for performance reasons
 For that, use a parallel system

■ Done because of necessity
 Imagine a large corporation with offices all over the world

 Also, for redundancy and for disaster recovery reasons

■ Lot of headaches
 Especially if trying to execute transactions that involve data from multiple sites

 Keeping the databases in sync

– 2-phase commit for transactions uniformly hated

 Autonomy issues

– Even within an organization, people tend to be protective of their
unit/department

 Locks/Deadlock management

 Works better for query processing

 Since we are only reading the data

Next…Next…

■ Object oriented, Object relational, XML

MotivationMotivation

■ Relational model:
 Clean and simple
 Great for much enterprise data
 But lot of applications where not sufficiently rich

 Multimedia, CAD, for storing set data etc

■ Object-oriented models in programming languages
 Complicated, but very useful

 Smalltalk, C++, now Java
 Allow

 Complex data types
 Inheritance
 Encapsulation

■ People wanted to manage objects in databases.

HistoryHistory

■ In the 1980’s and 90’s, DB researchers recognized benefits of
objects.

■ Two research thrusts:
 OODBMS: extend C++ with transactionally persistent objects

 Niche Market

 CAD etc

 ORDBMS: extend Relational DBs with object features

 Much more common

 Efficiency + Extensibility

 SQL:99 support

■ Postgres – First ORDBMS
 Berkeley research project

 Became Illustra, became Informix, bought by IBM

ExampleExample
■ Create User Defined Types (UDT)

CREATE TYPE BarType AS (
name CHAR(20),
addr CHAR(20)

);
CREATE TYPE BeerType AS (

name CHAR(20),
manf CHAR(20)

);
CREATE TYPE MenuType AS (

bar REF BarType,
beer REF BeerType,
price FLOAT

);

■ Create Tables of UDTs
 CREATE TABLE Bars OF BarType;
 CREATE TABLE Beers OF BeerType;
 CREATE TABLE Sells OF MenuType;

ExampleExample

■ Querying:
 SELECT * FROM Bars;

 Produces “tuples” such as:

 BarType(’Joe’’s Bar’, ’Maple St.’)

■ Another query:
 SELECT bb.name(), bb.addr()

 FROM Bars bb;

■ Inserting tuples:
 SET newBar = BarType();

 newBar.name(’Joe’’s Bar’);

 newBar.addr(’Maple St.’);

 INSERT INTO Bars VALUES(newBar);

ExampleExample

■ UDT’s can be used as types of attributes in a table
CREATE TYPE AddrType AS (

street CHAR(30),

city CHAR(20),

zip INT

);

CREATE TABLE Drinkers (

name CHAR(30),

addr AddrType,

favBeer BeerType

);

■ Find the beers served by Joe:
SELECT ss.beer()->name

FROM Sells ss

WHERE ss.bar()->name = ’Joe’’s Bar’;

An Alternative: OODBMSAn Alternative: OODBMS

■ Persistent OO programming
 Imagine declaring a Java object to be “persistent”
 Everything reachable from that object will also be persistent
 You then write plain old Java code, and all changes to the persistent

objects are stored in a database
 When you run the program again, those persistent objects have the

same values they used to have!

■ Solves the “impedance mismatch” between programming
languages and query languages
 E.g. converting between Java and SQL types, handling rowsets, etc.
 But this programming style doesn’t support declarative queries

 For this reason (??), OODBMSs haven’t proven popular

■ OQL: A declarative language for OODBMSs
 Was only implemented by one vendor in France (Altair)

OODBMSOODBMS

■ Currently a Niche Market
 Engineering, spatial databases, physics etc…

■ Main issues:
 Navigational access

 Programs specify go to this object, follow this pointer

 Not declarative

■ Though advantageous when you know exactly what you want,
not a good idea in general
 Kinda similar argument as network databases vs relational

databases

Summary, cont.Summary, cont.

■ ORDBMS offers many new features
 but not clear how to use them!

 schema design techniques not well understood

 No good logical design theory for non-1st-normal-form!

 query processing techniques still in research phase

 a moving target for OR DBA’s!

■ OODBMS
 Has its advantages

 Niche market

 Lot of similarities to XML as well…

XMLXML

■ Extensible Markup Language

■ Derived from SGML (Standard Generalized Markup Language)
 Similar to HTML, but HTML is not extensible

 Extensible == can add new tags etc

■ Emerging as the wire format (data interchange format)

XMLXML

 <bank-1>
 <customer>

 <customer-name> Hayes </customer-name>
 <customer-street> Main </customer-street>
 <customer-city> Harrison </customer-city>
 <account>

 <account-number> A-102 </account-number>
 <branch-name> Perryridge </branch-name>
 <balance> 400 </balance>

 </account>
 <account>
 …
 </account>

 </customer>
 .
 .

 </bank-1>

AttributesAttributes

■ Elements can have attributes
 <account acct-type = “checking” >

 <account-number> A-102 </account-number>
 <branch-name> Perryridge </branch-name>
 <balance> 400 </balance>

 </account>

■ Attributes are specified by name=value pairs inside
the starting tag of an element

■ An element may have several attributes, but each
attribute name can only occur once

 <account acct-type = “checking” monthly-fee=“5”>

Attributes Vs. SubelementsAttributes Vs. Subelements

■ Distinction between subelement and attribute
 In the context of documents, attributes are part of markup,

while subelement contents are part of the basic document
contents

 In the context of data representation, the difference is unclear
and may be confusing

 Same information can be represented in two ways

– <account account-number = “A-101”> …. </account>

– <account>
 <account-number>A-101</account-number> …
</account>

Suggestion: use attributes for identifiers of elements, and use
subelements for contents

NamespacesNamespaces

■ XML data has to be exchanged between organizations
■ Same tag name may have different meaning in different

organizations, causing confusion on exchanged documents
■ Specifying a unique string as an element name avoids

confusion
■ Better solution: use unique-name:element-name
■ Avoid using long unique names all over document by using XML

Namespaces

<bank Xmlns:FB=‘http://www.FirstBank.com’>
 …

 <FB:branch>
 <FB:branchname>Downtown</FB:branchname>

 <FB:branchcity> Brooklyn </FB:branchcity>
 </FB:branch>
…

</bank>

http://www.firstbank.com/
http://www.firstbank.com/

Document Type Definition (DTD)Document Type Definition (DTD)

■ The type of an XML document can be specified using a DTD
■ DTD constraints structure of XML data

 What elements can occur
 What attributes can/must an element have
 What subelements can/must occur inside each element, and how

many times.

■ DTD does not constrain data types
 All values represented as strings in XML

■ DTD syntax
 <!ELEMENT element (subelements-specification) >
 <!ATTLIST element (attributes) >

■ Also – XML Schema (not covered -read in book & online)

Bank DTDBank DTD

<!DOCTYPE bank [
<!ELEMENT bank ((account | customer | depositor)+)>
<!ELEMENT account (account-number branch-name balance)>
<! ELEMENT customer(customer-name customer-street
 customer-city)>
<! ELEMENT depositor (customer-name account-number)>
<! ELEMENT account-number (#PCDATA)>
<! ELEMENT branch-name (#PCDATA)>
<! ELEMENT balance(#PCDATA)>
<! ELEMENT customer-name(#PCDATA)>
<! ELEMENT customer-street(#PCDATA)>
<! ELEMENT customer-city(#PCDATA)>

]>

IDs and IDREFsIDs and IDREFs

■ An element can have at most one attribute of type ID

■ The ID attribute value of each element in an XML document
must be distinct
 Thus the ID attribute value is an object identifier

■ An attribute of type IDREF must contain the ID value of an
element in the same document

Bank DTD with AttributesBank DTD with Attributes

■ Bank DTD with ID and IDREF attribute types.
 <!DOCTYPE bank-2[

 <!ELEMENT account (branch, balance)>
 <!ATTLIST account
 account-number ID # REQUIRED

 owners IDREFS # REQUIRED>
 <!ELEMENT customer(customer-name, customer-street,

 custome-city)>
 <!ATTLIST customer

 customer-id ID # REQUIRED
 accounts IDREFS # REQUIRED>

 … declarations for branch, balance, customer-name,
 customer-street and customer-city
]>

XML data with ID and IDREF attributesXML data with ID and IDREF attributes

<bank-2>
<account account-number=“A-401” owners=“C100 C102”>
 <branch-name> Downtown </branch-name>
 <balance> 500 </balance>
</account>
<customer customer-id=“C100” accounts=“A-401”>
 <customer-name>Joe </customer-name>
 <customer-street> Monroe </customer-street>
 <customer-city> Madison</customer-city>
</customer>
<customer customer-id=“C102” accounts=“A-401 A-402”>
 <customer-name> Mary </customer-name>
 <customer-street> Erin </customer-street>
 <customer-city> Newark </customer-city>
</customer>

</bank-2>

Querying and Transforming XML DataQuerying and Transforming XML Data

■ Standard XML querying/translation languages
 XPath

 Simple language consisting of path expressions

 Forms a basic component of the next two

 XSLT

 Simple language designed for translation from XML to XML and
XML to HTML

 XQuery

 An XML query language with a rich set of features

Tree Model of XML DataTree Model of XML Data

■ Query and transformation languages are based on a tree model
of XML data

bank-2

account customer [customer-id=“C100”,
accounts=“A-401

branch-name

Downtown

customer [..]

balance

500

XPathXPath

■ /bank-2/customer/customer-name
<customer-name>Joe</customer-name>
<customer-name>Mary</customer-name>

■ /bank-2/customer/customer-name/text()
Joe
Mary

■ /bank-2/account[balance > 400]
 returns account elements with a balance value greater than

400

■ /bank-2/account[balance > 400]/@account-number
 returns the account numbers of those accounts with balance

> 400

Functions in XPathFunctions in XPath

■ /bank-2/account[customer/count() > 2]

 Returns accounts with > 2 customers

■ Boolean connectives and and or and function not() can be used
in predicates

■ IDREFs can be referenced using function id()

 E.g. /bank-2/account/id(@owner)

 returns all customers referred to from the owners attribute
of account elements.

More XPath FeaturesMore XPath Features

■ “//” can be used to skip multiple levels of nodes
 E.g. /bank-2//customer-name

 finds any customer-name element anywhere under the /bank-2
element, regardless of the element in which it is contained.

■ Wild-cards
 /bank-2/*/customer-name

 Match any element name

XSLTXSLT

■ A stylesheet stores formatting options for a document, usually
separately from document
 E.g. HTML style sheet may specify font colors and sizes for

headings, etc.

■ The XML Stylesheet Language (XSL) was originally designed for
generating HTML from XML

■ XSLT is a general-purpose transformation language
 Can translate XML to XML, and XML to HTML

■ XSLT transformations are expressed using rules called
templates
 Templates combine selection using XPath with construction of

results

XSLT TemplatesXSLT Templates

■ Example of XSLT template with match and select part
 <xsl:template match=“/bank-2/customer”>

 <xsl:value-of select=“customer-name”/>
 </xsl:template>
 <xsl:template match=“*”/>
■ The match attribute of xsl:template specifies a pattern in XPath
■ Elements in the XML document matching the pattern are

processed by the actions within the xsl:template element
 xsl:value-of selects (outputs) specified values (here, customer-

name)
■ For elements that do not match any template

 Attributes and text contents are output as is
 Templates are recursively applied on subelements

■ The <xsl:template match=“*”/> template matches all
elements that do not match any other template
 Used to ensure that their contents do not get output.

Creating XML OutputCreating XML Output

■ Any text or tag in the XSL stylesheet that is not in the xsl
namespace is output as is

■ E.g. to wrap results in new XML elements.
 <xsl:template match=“/bank-2/customer”>

 <customer>
 <xsl:value-of select=“customer-name”/>
 </customer>

 </xsl:template>
 <xsl:template match=“*”/>

Example output:
 <customer> Joe </customer>
 <customer> Mary </customer>

XQueryXQuery

■ XQuery is a general purpose query language for XML data

■ Currently being standardized by the World Wide Web
Consortium (W3C)
 The textbook description is based on a March 2001 draft of the

standard. The final version may differ, but major features likely to
stay unchanged.

■ Alpha version of XQuery engine available free from Microsoft

■ XQuery is derived from the Quilt query language, which itself
borrows from SQL, XQL and XML-QL

■ XQuery uses a
 for … let … where .. result …
syntax
 for  SQL from
 where  SQL where
 result  SQL select
 let allows temporary variables, and has no equivalent in SQL

FLWR Syntax in XQuery FLWR Syntax in XQuery

■ For clause uses XPath expressions, and variable in for clause
ranges over values in the set returned by XPath

■ Simple FLWR expression in XQuery
 find all accounts with balance > 400, with each result enclosed in an

<account-number> .. </account-number> tag
 for $x in /bank-2/account
 let $acctno := $x/@account-number
 where $x/balance > 400
 return <account-number> $acctno </account-number>

■ Let clause not really needed in this query, and selection can be
done In XPath. Query can be written as:

for $x in /bank-2/account[balance>400]
return <account-number> $x/@account-number

 </account-number>

JoinsJoins

■ Joins are specified in a manner very similar to SQL
for $a in /bank/account,

 $c in /bank/customer,

 $d in /bank/depositor

 where $a/account-number = $d/account-number
 and $c/customer-name = $d/customer-name

 return <cust-acct> $c $a </cust-acct>

■ The same query can be expressed with the selections specified
as XPath selections:

 for $a in /bank/account
 $c in /bank/customer

 $d in /bank/depositor[
 account-number = $a/account-number and
 customer-name = $c/customer-name]

 return <cust-acct> $c $a</cust-acct>

XML: SummaryXML: Summary

■ Becoming the standard for data exchange

■ Many details still need to be worked out !!

■ Active area of research…
 Especially optimization/implementation

Worst...idea...ever!

