CMSC 424 – Database design Lecture 25 Special databases Data warehouses Data mining/Information retrieval

Mihai Pop

Admin

- Course evaluation: http://www.CourseEvalUM.umd.edu
- Review sessions: Thursday & Monday

 e-mail me topics to cover, questions, problems, etc.

"Special" databases

- Biological data
- Geographic data GIS
- Movies
- etc.

- New types of queries
- New ways of indexing data
- Storing/retrieval issues (e.g. large sizes, streaming, real-time, etc.)

Examples

Biological data

 refinement of "like" queries: find sequences that are "related"

- Query: 1 MSVMYKKILYPTDFSETAEIALKHVKAFKTLKAEEVILLHVIDEREIKKRDIFSLLLGVA 60 M M++K+L+PTDFSE A A++ + ++ EVILLHVIDE +++ L+ G + Sbjct: 1 MIFMFRKVLFPTDFSEGAYRAVEVFEKRNKMEVGEVILLHVIDEGTLEE----LMDGYS 55
- Spatial/geographic data (GIS)
 - find all Home Depot stores within 15 miles of Baltimore
 - find a point in Maryland that's farther than 15 miles from the nearest Lowes and is densely populated
 - find all cities within lat/lon square: 39.00 N, 40.00 N, 76.00W, 77.00W.
 - special/spatial index: R-tree

R-tree (chap. 24)

- Binary search tree on Y-coordinate
- Each internal node contains search structure on X-coordinate for all points with Y coordinates in the corresponding subtree

OLAP (chap. 18)

On-line Analytical Processing

Why?

- ★Exploratory analysis
 - Interactive
 - Different queries than typical SQL queries

★Data CUBE

A summary structure used for this purpose

- -E.g. give me total sales by zipcode; now show me total sales by customer employment category
- Much much faster than using SQL queries against the raw data

-The tables are *huge*

Applications:

– Sales reporting, Marketing, Forecasting etc etc

Cross Tabulation of sales by item-name and color

size: all					
			color		
item-name		dark	pastel	white	Total
	skirt	8	35	10	53
	dress	20	10	5	35
	shirt	14	7	28	49
	pant	20	2	5	27
	Total	62	54	48	164

The table above is an example of a cross-tabulation (cross-tab), also referred to as a pivot-table.

- ★ Values for one of the dimension attributes form the row headers
- ★ Values for another dimension attribute form the column headers
- Other dimension attributes are listed on top
- Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.

Data Cube

- A data cube is a multidimensional generalization of a cross-tab
- Can have *n* dimensions; we show 3 below
- Cross-tabs can be used as views on a data cube

Data federation

- E.g. biological data:
 - VectorBase organisms that carry human disease (e.g. mosquito)
 - Flybase fruit flies
 - InsectBase???
- Federation -combining multiple databases into a single virtual database
- Has many issues:
 - schema translation?
 - common vocabulary? (e.g. ontologies, semantic web)
 - privacy/security
 - performance
- Non-biological: SkyServer/SkyQuery (Sloan Digital Sky Survey)

Data warehouses

- Brute-force solution to federation:
 - download all databases
 - convert them to a common schema
 - provide a common interface
- Problems:
 - data storage & duplication
 - hard to keep up to date
 - performance (single point of entry/ failure)
- Examples:
 - GenBank (US biological data repository)
 - Ensembl (EU biological data repository)

Data Mining

- Searching for patterns in data

 Typically done in data warehouses
- Association Rules:
 - When a customer buys X, she also typically buys Y
 Use ?
 - Move X and Y together in supermarkets
 - A customer buys a lot of shirts
 - Send him a catalogue of shirts
 - ★ Patterns are not always obvious
 - Classic example: It was observed that men tend to buy *beer* and *diapers* together (may be an urban legend)
- Other types of mining
 Classification
 Decision Trees

Information retrieval (chap. 19)

- Extracting **meaning** from **data**
- Examples:
 - Google (document indexing/ranking)
 - Image search
 - Automatic annotation of documents, e.g. extracting information from bio-medical literature

What's next?

- Databases for new types of data (e.g. biological or social networks)
- Streaming databases (Comcast OnDemand)
- Large amounts of data
- Security/Privacy