
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Lecture 6: SQLLecture 6: SQL
Chapter 3Chapter 3

http://www.db-book.com/

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Administrative issuesAdministrative issues

■ SQL assignment

■ SQL*plus documentation
http://www.oracle.com/technology/docs/tech/sql_plus/index.html

■ SQL documentation
See SQL reference in:
http://www.oracle.com/pls/db102/homepage

■ Note – for drawing ER diagrams
DiaCze (Windows)
http://www.cze.cz/downloads.php
Kivio (Linux, Mac)
http://www.koffice.org/download/
Dia (Linux, Windows)
http://live.gnome.org/Dia/Download

http://www.db-book.com/
http://www.oracle.com/technology/docs/tech/sql_plus/index.html
http://www.oracle.com/pls/db102/homepage
http://www.cze.cz/downloads.php
http://www.koffice.org/download/
http://live.gnome.org/Dia/Download

©Silberschatz, Korth and Sudarshan3.3Database System Concepts, 5th Edition, Oct 5, 2006

Domain Types in SQLDomain Types in SQL

■ char(n). Fixed length character string, with user-specified length n.
■ varchar(n). Variable length character strings, with user-specified maximum

length n.
■ int. Integer (a finite subset of the integers that is machine-dependent).
■ smallint. Small integer (a machine-dependent subset of the integer

domain type).
■ numeric(p,d). Fixed point number, with user-specified precision of p digits,

with n digits to the right of decimal point.
■ real, double precision. Floating point and double-precision floating point

numbers, with machine-dependent precision.
■ float(n). Floating point number, with user-specified precision of at least n

digits.
■ More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.4Database System Concepts, 5th Edition, Oct 5, 2006

Create Table ConstructCreate Table Construct

■ An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

● r is the name of the relation
● each Ai is an attribute name in the schema of relation r

● Di is the data type of values in the domain of attribute Ai

■ Example:

create table branch
(branch_name char(15) not null,
branch_city char(30),
assets integer)

©Silberschatz, Korth and Sudarshan3.5Database System Concepts, 5th Edition, Oct 5, 2006

Integrity Constraints in Create TableIntegrity Constraints in Create Table

■ not null

■ primary key (A1, ..., An)

Example: Declare branch_name as the primary key for branch
.

create table branch
 (branch_name char(15),
 branch_city char(30),
 assets integer,
 primary key (branch_name))

primary key declaration on an attribute automatically ensures
not null in SQL-92 onwards, needs to be explicitly stated in
SQL-89

©Silberschatz, Korth and Sudarshan3.6Database System Concepts, 5th Edition, Oct 5, 2006

Drop and Alter Table ConstructsDrop and Alter Table Constructs

■ The drop table command deletes all information about the dropped
relation from the database.

■ The alter table command is used to add attributes to an existing
relation:

 alter table r add A D

 where A is the name of the attribute to be added to relation r and D
is the domain of A.

● All tuples in the relation are assigned null as the value for the
new attribute.

■ The alter table command can also be used to drop attributes of a
relation:

alter table r drop A

 where A is the name of an attribute of relation r

● Dropping of attributes not supported by many databases

©Silberschatz, Korth and Sudarshan3.7Database System Concepts, 5th Edition, Oct 5, 2006

Basic Query Structure Basic Query Structure

■ SQL is based on set and relational operations with certain
modifications and enhancements

■ A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

● Ai represents an attribute

● Ri represents a relation

● P is a predicate.
■ This query is equivalent to the relational algebra expression.

■ The result of an SQL query is a relation.
∏A1 , A2 , , An

σ P r1×r2××rm

©Silberschatz, Korth and Sudarshan3.8Database System Concepts, 5th Edition, Oct 5, 2006

The select ClauseThe select Clause

■ The select clause list the attributes desired in the result of a query

● corresponds to the projection operation of the relational algebra

■ Example: find the names of all branches in the loan relation:
select branch_name
from loan

■ In the relational algebra, the query would be:

∏branch_name (loan)

■ NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

● E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

● Some people use upper case wherever we use bold font.

©Silberschatz, Korth and Sudarshan3.9Database System Concepts, 5th Edition, Oct 5, 2006

The select Clause (Cont.)The select Clause (Cont.)

■ SQL allows duplicates in relations as well as in query results.

■ To force the elimination of duplicates, insert the keyword distinct after
select.

■ Find the names of all branches in the loan relations, and remove
duplicates

select distinct branch_name
from loan

■ The keyword all specifies that duplicates not be removed.

select all branch_name
from loan

©Silberschatz, Korth and Sudarshan3.10Database System Concepts, 5th Edition, Oct 5, 2006

The select Clause (Cont.)The select Clause (Cont.)

■ An asterisk in the select clause denotes “all attributes”

select *
from loan

■ The select clause can contain arithmetic expressions involving the
operation, +, –, ∗, and /, and operating on constants or attributes of
tuples.

■ The query:

 select loan_number, branch_name, amount ∗ 100
 from loan

would return a relation that is the same as the loan relation, except that
the value of the attribute amount is multiplied by 100.

©Silberschatz, Korth and Sudarshan3.11Database System Concepts, 5th Edition, Oct 5, 2006

The where ClauseThe where Clause

■ The where clause specifies conditions that the result must satisfy

● Corresponds to the selection predicate of the relational algebra.

■ To find all loan number for loans made at the Perryridge branch with
loan amounts greater than $1200.

select loan_number
from loan
where branch_name = 'Perryridge' and amount > 1200

■ Comparison results can be combined using the logical connectives and,
or, and not.

■ Comparisons can be applied to results of arithmetic expressions.

©Silberschatz, Korth and Sudarshan3.12Database System Concepts, 5th Edition, Oct 5, 2006

The where Clause (Cont.)The where Clause (Cont.)

■ SQL includes a between comparison operator

■ Example: Find the loan number of those loans with loan amounts between
$90,000 and $100,000 (that is, ≥ $90,000 and ≤ $100,000)

 select loan_number
from loan
where amount between 90000 and 100000

©Silberschatz, Korth and Sudarshan3.13Database System Concepts, 5th Edition, Oct 5, 2006

The from ClauseThe from Clause

■ The from clause lists the relations involved in the query

● Corresponds to the Cartesian product operation of the relational algebra.

■ Find the Cartesian product borrower X loan

select ∗
from borrower, loan

■ Find the name, loan number and loan amount of all customers
 having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount
 from borrower, loan
 where borrower.loan_number = loan.loan_number and
 branch_name = 'Perryridge'

©Silberschatz, Korth and Sudarshan3.14Database System Concepts, 5th Edition, Oct 5, 2006

The Rename OperationThe Rename Operation

■ The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

■ Find the name, loan number and loan amount of all customers; rename the
column name loan_number as loan_id.

select customer_name, borrower.loan_number as loan_id, amount
from borrower, loan
where borrower.loan_number = loan.loan_number

©Silberschatz, Korth and Sudarshan3.15Database System Concepts, 5th Edition, Oct 5, 2006

Tuple VariablesTuple Variables

■ Tuple variables are defined in the from clause via the use of the as
clause.

■ Find the customer names and their loan numbers for all customers
having a loan at some branch.

■ Find the names of all branches that have greater assets than
 some branch located in Brooklyn.
 select distinct T.branch_name
 from branch as T, branch as S
 where T.assets > S.assets and S.branch_city = 'Brooklyn'

■Keyword as is optional and may be omitted
 borrower as T borrower≡ T

select customer_name, T.loan_number, S.amount
 from borrower as T, loan as S
 where T.loan_number = S.loan_number

©Silberschatz, Korth and Sudarshan3.16Database System Concepts, 5th Edition, Oct 5, 2006

String OperationsString Operations

■ SQL includes a string-matching operator for comparisons on character
strings. The operator “like” uses patterns that are described using two
special characters:

● percent (%). The % character matches any substring.

● underscore (_). The _ character matches any character.

■ Find the names of all customers whose street includes the substring
“Main”.

select customer_name
from customer
where customer_street like '% Main%'

■ Match the name “Main%”

like 'Main\%' escape '\'
■ SQL supports a variety of string operations such as

● concatenation (using “||”)

● converting from upper to lower case (and vice versa)

● finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan3.17Database System Concepts, 5th Edition, Oct 5, 2006

Ordering the Display of TuplesOrdering the Display of Tuples

■ List in alphabetic order the names of all customers having a loan in
Perryridge branch

select distinct customer_name
from borrower, loan
where borrower loan_number = loan.loan_number and
 branch_name = 'Perryridge'
order by customer_name

■ We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

● Example: order by customer_name desc

©Silberschatz, Korth and Sudarshan3.18Database System Concepts, 5th Edition, Oct 5, 2006

Set OperationsSet Operations

■ Find all customers who have a loan, an account, or both:

(select customer_name from depositor)
except
(select customer_name from borrower)

(select customer_name from depositor)
intersect
(select customer_name from borrower)

■ Find all customers who have an account but no loan.

(select customer_name from depositor)
union [or union all]
(select customer_name from borrower)

■ Find all customers who have both a loan and an account.

©Silberschatz, Korth and Sudarshan3.19Database System Concepts, 5th Edition, Oct 5, 2006

Aggregate Functions – Group ByAggregate Functions – Group By

■ Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions must
 appear in group by list

select branch_name, count (distinct customer_name)
 from depositor, account
 where depositor.account_number = account.account_number
 group by branch_name

©Silberschatz, Korth and Sudarshan3.20Database System Concepts, 5th Edition, Oct 5, 2006

Aggregate Functions – Having ClauseAggregate Functions – Having Clause

■ Find the names of all branches where the average account balance is
more than $1,200.

 Note: predicates in the having clause are applied after the
 formation of groups whereas predicates in the where
 clause are applied before forming groups

select branch_name, avg (balance)
 from account
 group by branch_name
 having avg (balance) > 1200

©Silberschatz, Korth and Sudarshan3.21Database System Concepts, 5th Edition, Oct 5, 2006

ViewsViews

■ In some cases, it is not desirable for all users to see the entire logical
model (that is, all the actual relations stored in the database.)

■ Consider a person who needs to know a customer’s name, loan number
and branch name, but has no need to see the loan amount. This person
should see a relation described, in SQL, by

 (select customer_name, borrower.loan_number, branch_name
 from borrower, loan
 where borrower.loan_number = loan.loan_number)

■ A view provides a mechanism to hide certain data from the view of
certain users.

■ Any relation that is not of the conceptual model but is made visible to a
user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan3.22Database System Concepts, 5th Edition, Oct 5, 2006

View DefinitionView Definition

■ A view is defined using the create view statement which has the
form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view
name is represented by v.

■ Once a view is defined, the view name can be used to refer to the
virtual relation that the view generates.

■ When a view is created, the query expression is stored in the
database; the expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan3.23Database System Concepts, 5th Edition, Oct 5, 2006

Example QueriesExample Queries

■ A view consisting of branches and their customers

■ Find all customers of the Perryridge branch

create view all_customer as
 (select branch_name, customer_name
 from depositor, account
 where depositor.account_number =

account.account_number)
 union
 (select branch_name, customer_name
 from borrower, loan
 where borrower.loan_number = loan.loan_number)

select customer_name
from all_customer
where branch_name = 'Perryridge'

