
CMSC 424 – Database design
Lecture 7

SQL, constraints

Mihai Pop

Admin issue
• Office hours tomorrow 10-11am
• Issues/concerns?

Homework 1...answers
• If grade < 7-8/10 you should worry!
• E-R diagram – on board

– -1pt if links to “course” rather than “offering”
• Participatory constraints

– course-offering in TOTAL participation with courses
– -2pt if “total participation” or “partial participation” not mentioned

in answer
• Constraints on course taking

– -0.5 if constraints on wrong edge
– -2pt if using attributes instead of constraints in E-R diagram

• File system
– -1 pt if no E-R diagram
– -1 pt if pseudocode does not specifically address how files laid out

on disk and three operations not described
– -1 pt if not specifically addressing multiple users accessing the

datastructures

Aggregate Functions – Group By

• Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions must
 appear in group by list

select branch_name, count (distinct customer_name)
 from depositor, account
 where depositor.account_number = account.account_number
 group by branch_name

Aggregate Functions – Having Clause

• Find the names of all branches where the average
account balance is more than $1,200.

 Note: predicates in the having clause are applied after the
 formation of groups whereas predicates in the where
 clause are applied before forming groups

select branch_name, avg (balance)
 from account
 group by branch_name
 having avg (balance) > 1200

Complex Queries using With Clause

• Find all branches where the total account deposit
is greater than the average of the total account
deposits at all branches.

 with branch_total (branch_name, value) as
 select branch_name, sum (balance)
 from account
 group by branch_name
 with branch_total_avg (value) as
 select avg (value)
 from branch_total
 select branch_name
 from branch_total, branch_total_avg
 where branch_total.value >= branch_total_avg.value

Example Query

• Find all customers who have both an account and
a loan at the bank.

■ Find all customers who have a loan at the bank but do not have
 an account at the bank

select distinct customer_name
from borrower
where customer_name not in (select customer_name

 from depositor)

select distinct customer_name
from borrower
where customer_name in (select customer_name

 from depositor)

Set Comparison

• Find all branches that have greater assets than
some branch located in Brooklyn.

■ Same query using > some clause

select branch_name
from branch
where assets > some
 (select assets
 from branch

 where branch_city = 'Brooklyn')

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and
 S.branch_city = 'Brooklyn'

Example Query

• Find the names of all branches that have greater
assets than all branches located in Brooklyn.

select branch_name
from branch
where assets > all

(select assets
from branch
where branch_city = 'Brooklyn')

Example Query

• Find all customers who have an account at all
branches located in Brooklyn.
select distinct S.customer_name

from depositor as S
where not exists (

(select branch_name
from branch
where branch_city = 'Brooklyn')

 except
(select R.branch_name
from depositor as T, account as R
where T.account_number = R.account_number and

S.customer_name = T.customer_name))

■ Note that X – Y = Ø ⇔ X ⊆ Y

■ Note: Cannot write this query using = all and its variants

temp tables, other...
• Select into

select * into temp_table
from ...

• Note that in SQL results are not sets – relational algebra
must be redefined as BAG operations instead of SET
operations

SQL: Summary

π (or π*)
×*
σ*

Extended relational operator g
σ*
Can’t express: requires ordered sets,
bags
ρ
U*
U

4
1
2
7
3
5
6

-
8

SELECT [(DISTINCT)]
FROM
WHERE
INTO
GROUP BY
HAVING
ORDER BY

AS
UNION ALL
UNION
(similarly intersection,
except)

Semantics (RA/RA*)Eval
Order

Clause

Example Queries

• A view consisting of branches and their customers

Find all customers of the Perryridge branch

create view all-customers as
 (select branch-name, customer-name
 from depositor, account
 where depositor.account-number = account.account-number)
 union
 (select branch-name, customer-name
 from borrower, loan
 where borrower.loan-number = loan.loan-number)

select customer-name
from all-customers
where branch-name = ‘Perryridge’

Views

• Is it different from DBMS’s side ?
– Yes; a view may or may not be materialized
– Pros/Cons ?

• Updates into views have to be treated differently
– In most cases, disallowed.

Modification of the Database – Updates

Increase all accounts with balances over $10,000 by 6%,
all other accounts receive 5%.
Write two update statements:

update account
set balance = balance ∗ 1.06
where balance > 10000

update account
set balance = balance ∗ 1.05
where balance ≤ 10000

The order is important
Can be done better using the case statement

Modification of the Database – Deletion

Delete all account records at the Perryridge branch
delete from account
where branch-name = ‘Perryridge’

Delete all accounts at every branch located in Needham city.
delete from account
where branch-name in (select branch-name

 from branch
 where branch-city = ‘Needham’)

delete from depositor
where account-number in
 (select account-number

 from branch, account
 where branch-city = ‘Needham’
 and branch.branch-name = account.branch-name)

Example Query

Delete the record of all accounts with balances below the
average at the bank.
 delete from account
 where balance < (select avg (balance)

 from account)

Problem: as we delete tuples from deposit, the average balance
 changes

Solution used in SQL:

★ First, compute avg balance and find all tuples to delete

★ Next, delete all tuples found above (without recomputing avg or
 retesting the tuples)

Modification of the Database – Insertion

Add a new tuple to account
insert into account

values (‘A-9732’, ‘Perryridge’,1200)

or equivalently
insert into account (branch-name, balance, account-number)

values (‘Perryridge’, 1200, ‘A-9732’)

Add a new tuple to account with balance set to null
insert into account

values (‘A-777’,‘Perryridge’, null)

Update of a View

Create a view of all loan data in loan relation, hiding the amount attribute
create view branch-loan as

select branch-name, loan-number
from loan

Add a new tuple to branch-loan
insert into branch-loan

values (‘Perryridge’, ‘L-307’)
This insertion must be represented by the insertion of the tuple

(‘L-307’, ‘Perryridge’, null)
into the loan relation

Updates on more complex views are difficult or impossible to translate, and
hence are disallowed.

Many SQL implementations allow updates only on simple views (without
aggregates) defined on a single relation

Modification of the Database – Updates
• Increase all accounts with balances over $10,000

by 6%, all other accounts receive 5%.
– Write two update statements:

update account
set balance = balance ∗ 1.06
where balance > 10000

update account
set balance = balance ∗ 1.05
where balance ≤ 10000

– The order is important
– Can be done better using the case statement (next slide)

Case Statement for Conditional Updates
• Same query as before: Increase all accounts with

balances over $10,000 by 6%, all other accounts
receive 5%.

 update account
 set balance = case
 when balance <= 10000
 then balance *1.05
 else balance * 1.06
 end

Next

NULLS

More SQL: Nulls

The “dirty little secret” of SQL
(major headache for query optimization)

Can be a value of any attribute
e.g: branch =

What does this mean?
(unknown) We don’t know Waltham’s assets?
(inapplicable) Waltham has a special kind of account without
assets
(withheld) We are not allowed to know

NULLBostonWaltham

.4MHorseneckMianus

1.7MHorseneckPerry

9MBostonDowntown

assetsbcitybname

More SQL: Nulls

Arithmetic Operations with Null
n + NULL = NULL (similarly for all arithmetic ops: +, -, *, /, mod, …)

SELECT bname, assets * 2 as a2
FROM branch

e.g: branch =

=

NULLBostonWaltham

.4MHorseneckMianus

1.7MHorseneckPerry

9MBostonDowntown

assetsbcitybname

NULLWaltham

.8MMianus

3.4MPerry

18MDowntown

a2bname

More SQL: Nulls

Boolean Operations with Null
n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, …)

e.g: branch =

=SELECT *
FROM branch
WHERE assets = NULL

NULLBostonWaltham

.4MHorseneckMianus

1.7MHorseneckPerry

9MBostonDowntown

assetsbcitybname

assetsbcitybname

Counter-intuitive: select * from movies
 where length >= 120 or length <= 120

Counter-intuitive: NULL * 0 = NULL

More SQL: Nulls

Boolean Operations with Null
n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, …)

e.g: branch =

=SELECT *
FROM branch
WHERE assets IS NULL

NULLBostonWaltham

.4MHorseneckMianus

1.7MHorseneckPerry

9MBostonDowntown

assetsbcitybname

NULLBostonWaltham

assetsbcitybname

Transactions

A transaction is a sequence of queries and update statements executed as a
single unit
Transactions are started implicitly and terminated by one of

• commit work: makes all updates of the transaction permanent in the database
• rollback work: undoes all updates performed by the transaction.

Motivating example
Transfer of money from one account to another involves two steps:

• deduct from one account and credit to another
If one steps succeeds and the other fails, database is in an inconsistent state
Therefore, either both steps should succeed or neither should

If any step of a transaction fails, all work done by the transaction can be undone
by rollback work.

Rollback of incomplete transactions is done automatically, in case of system
failures

Transactions (Cont.)

In most database systems, each SQL statement that
executes successfully is automatically committed.
Each transaction would then consist of only a single statement
Automatic commit can usually be turned off, allowing multi-

statement transactions, but how to do so depends on the
database system

Another option in SQL:1999: enclose statements within
 begin atomic
 …
 end

Triggers

A trigger is a statement that is executed automatically by
the system as a side effect of a modification to the
database.

Trigger Example

Suppose that instead of allowing negative account
balances, the bank deals with overdrafts by
1. setting the account balance to zero
2. creating a loan in the amount of the overdraft
3. giving this loan a loan number identical to the account

number of the overdrawn account

Trigger Example in SQL:1999
create trigger overdraft-trigger after update on account
referencing new row as nrow
 for each row
when nrow.balance < 0
begin atomic

 actions to be taken
 end

Trigger Example in SQL:1999
create trigger overdraft-trigger after update on account
referencing new row as nrow
 for each row
when nrow.balance < 0
begin atomic

insert into borrower
(select customer-name, account-number

 from depositor
 where nrow.account-number = depositor.account-number);
 insert into loan values

(nrow.account-number, nrow.branch-name, nrow.balance);
 update account set balance = 0

where account.account-number = nrow.account-number
end

Triggers…

External World Actions
How does the DB order something if the inventory is
low ?

Syntax
Every system has its own syntax

Careful with triggers
Cascading triggers, Infinite Sequences…

