CMSC 424 - Database design Lecture 9 Normalization

Mihai Pop

Administrative

- SQL assignment questions - Sharath
- Project - please pair up - submit pairs by Monday, March 4.
- For midterm - chapters 1-4, 6
- Anything you'd like me to go over now?

Accessing databases from software

- Embedded SQL (special commands within C, Java, etc. code)

SQL APIs

- ODBC
- JDBC
- Perl::DBI
- Ruby on Rails

Basic protocol

- connect to server
- run SQL commands - tuples returned as cursors/iterators (allows you iterate over each tuple in result table)
- disconnect from server
- Read chapter 4!!! You'll need this for project.

SQL...last thoughts

- You learn best through practice
- Every database system is different (syntax, conventions, etc.)
- READ THE REFERENCE MANUALS!

Relational Database Design

Where did we come up with the schema that we used?
E.g. why not store the actor names with movies ?

Or, store the author names with the papers?

Topics:
Formal definition of what it means to be a "good" schema.
How to achieve it.

Movies Database Schema

Movie(title, year, length, inColor, studioName, producerC\#) Starsln(movieTitle, movieYear, starName)

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert\#, netWorth)
Studio(name, address, presC\#)

Changed to:
Movie(title, year, length, inColor, studioName, producerC\#, starName)
<merged into above>
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert\#, netWorth)
Studio(name, address, presC\#)

Example Relation

Movie(title, year, length, inColor, studioName, producerC\#, starName) <merged into above>
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert\#, netWorth)
Studio(name, address, presC\#)

Title	Year	Length	StudioName	prodC\#	StarName
Star wars	1977	120	Fox	128	Hamill
Star wars	1977	120	Fox	128	Fisher
Star wars	1977	120	Fox	128	H. Ford
King Kong	2005	..	Studio_A	150	Naomi
King Kong	1940	..	Studio_B	20	Faye

What we're looking for in a schema

- Low/no redundancy
- Easy to understand structure
- Easy to write queries
- Efficient to answer queries
- Ease of maintaining integrity of the data
- Difficult to do this "by hand"
- Normalization - formal algorithms for creating a "reasonable" schema

Combine Schemas?

- Suppose we combine borrow and loan to get bor_loan = (customer_id, loan_number, amount)
- Result is possible repetition of information (L-100 in example below)

A Combined Schema Without Repetition

- Consider combining loan_branch and loan
- loan_amt_br = (loan_number, amount, branch_name)
- No repetition (as suggested by example below)

What About Smaller Schemas?

- Suppose we had started with bor_loan. How would we know to split up (decompose) it into borrower and loan?
- Write a rule "if there were a schema (loan_number, amount), then loan_number would be a candidate key"
- Denote as a functional dependency:
loan_number © amount

Functional Dependencies

- set of attributes whose values uniquely determine the values of the remaining attributes e.g. a key defines an FD:

e.g. in | EMP(eno,ename,sal) | key FDs: |
| :---: | :---: |
| DEPT(dno, dname,floor) | |
| WORKS-IN(eno,dno,hours) \rightarrow ename | |
| eno \rightarrow sal | |

for every pair of values of eno,dno there exists exactly one value for hours

- in general if $\alpha \subseteq R$ and $\beta \subseteq R$, then $\alpha \rightarrow \beta$ holds in the extension $\mathrm{r}(\mathrm{R})$ of R
iff for any pair $t 1$ and $t 2$ tuples of $r(R)$ such that $t 1(\alpha)=t 2(\alpha)$, then it is also true that $\mathrm{t} 1(\beta)=\mathrm{t} 2(\beta) \quad$ (uniqueness of β values)
- we can use the FDs as
- constraints that we want to enforce (e.g. keys)
- for checking if the FDs are satisfied in the database

$\mathrm{R}(\mathrm{A}$	B	C	$\mathrm{D})$
1	1	1	1
1	2	1	2
2	2	2	2
2	3	2	3
3	3	2	4

FDs continued

- trivial dependencieṣ: $\alpha \rightarrow \alpha$ $\alpha \rightarrow \beta$ if $\beta \subseteq \alpha$
- closure
- need all FDs
- some logically implied by others e.g. if $A \rightarrow B \& B \rightarrow C$ then $A \rightarrow C$ is implied
- given F = set of FDs, find F+ (the closure) of all logically implied by F

Amstrong's axioms

- reflexivity: if $\beta \subseteq \alpha$ then $\alpha \rightarrow \beta$ (trivial FD)
- augmentation: if $\alpha \rightarrow \beta$ then $\gamma \alpha \rightarrow \gamma \beta$
- transitivity: if $\alpha \rightarrow \beta \& \beta \rightarrow \gamma$ then $\alpha \rightarrow \gamma$

More FD Rules

- union rule:
- decomposition rule:
- pseudotransitivity rule:
if $\alpha \rightarrow \beta$ \& $\alpha \rightarrow \gamma$ then $\alpha \rightarrow \beta \gamma$
if $\alpha \rightarrow \beta \gamma$ then $\alpha \rightarrow \beta \quad \& \quad \alpha \rightarrow \gamma$
if $\alpha \rightarrow \beta \quad \& \quad \gamma \beta \rightarrow \delta \quad$ then $\alpha \gamma \rightarrow \delta$

```
Example: R(A,B,C,G,H,I)
    \(F=\{A \rightarrow B\)
        \(\mathrm{A} \rightarrow \mathrm{C}\)
        CG \(\rightarrow \mathrm{H}\)
        CG \(\rightarrow\) I
        \(B \rightarrow H\}\)
\(\mathrm{F}+=\left\{\mathrm{A} \rightarrow \mathrm{H} \quad \quad^{*} \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{H} \quad\right.\) transitivity
    \(\mathrm{CG} \rightarrow \mathrm{HI} \quad / * \mathrm{CG} \rightarrow \mathrm{H}, \mathrm{CG} \rightarrow \mathrm{I}\) union rule
    AG \(\rightarrow\) I /* \(\mathrm{A} \rightarrow \mathrm{C}\) augmentation \(\mathrm{AG} \rightarrow \mathrm{CG} \rightarrow \mathrm{I}\)
        \(\mathrm{AG} \rightarrow \mathrm{H}\}\)
/*
                                    CG \(\rightarrow \mathrm{H}\)
```

- there is a non-trivial (exponential) algorithm for computing F+

Closure of Attribute Sets

- useful to find if a set of attributes is a superkey
- the closure $\alpha+$ of a set of attributes α under F is the set of all attributes that are functionally determined by α
- there is an algorithm that computes the closure

Example:

Algorithm to		
compute (AG) +		
start with	result=(AG)	
$\mathrm{A} \rightarrow \mathrm{B}$	expands	result=(AGB)
$\mathrm{A} \rightarrow \mathrm{C}$	expands	result=(AGBC)
CG $\rightarrow \mathbf{H}$	"-"	result=(AGBCH)
CG $\rightarrow \mathbf{I}$	"-"	result=(AGBCHI)
$\mathrm{B} \rightarrow \mathrm{H}$	no more	expansion

Note that since G is not on any right hand side, no subset of the attributes can be a superkey unless it contains G for there is no FD to generate it.

