
CMSC 424 – Database design
Lecture 9

Normalization

Mihai Pop

Administrative
• SQL assignment questions – Sharath

• Project – please pair up – submit pairs by Monday, March 4.

• For midterm – chapters 1-4, 6

• Anything you'd like me to go over now?

Accessing databases from software
• Embedded SQL (special commands within C, Java, etc. code)

SQL APIs
• ODBC
• JDBC
• Perl::DBI
• Ruby on Rails

Basic protocol
• connect to server
• run SQL commands – tuples returned as cursors/iterators

(allows you iterate over each tuple in result table)
• disconnect from server

• Read chapter 4!!! You'll need this for project.

SQL...last thoughts
• You learn best through practice

• Every database system is different (syntax, conventions, etc.)

• READ THE REFERENCE MANUALS!

Relational Database Design

Where did we come up with the schema that we used ?
E.g. why not store the actor names with movies ?
Or, store the author names with the papers ?

Topics:
Formal definition of what it means to be a “good”
schema.
How to achieve it.

Movies Database Schema
Movie(title, year, length, inColor, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

Movie(title, year, length, inColor, studioName, producerC#, starName)
<merged into above>
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

Changed to:

Example Relation

Naomi150Studio_A..2005King Kong

Faye20Studio_B..1940King Kong

H. Ford128Fox1201977Star wars

Fisher128Fox1201977Star wars

Hamill128Fox1201977Star wars

StarNameprodC#StudioNameLengthYearTitle

Movie(title, year, length, inColor, studioName, producerC#, starName)
<merged into above>
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

What we're looking for in a schema

• Low/no redundancy
• Easy to understand structure
• Easy to write queries
• Efficient to answer queries
• Ease of maintaining integrity of the data

• Difficult to do this “by hand”

• Normalization – formal algorithms for creating a
“reasonable” schema

Combine Schemas?
● Suppose we combine borrow and loan to get

bor_loan = (customer_id, loan_number, amount)
• Result is possible repetition of information (L-100 in example

below)

A Combined Schema Without Repetition
● Consider combining loan_branch and loan

● loan_amt_br = (loan_number, amount, branch_name)
● No repetition (as suggested by example below)

What About Smaller Schemas?

● Suppose we had started with bor_loan. How would we know to split
up (decompose) it into borrower and loan?

● Write a rule “if there were a schema (loan_number, amount), then
loan_number would be a candidate key”

● Denote as a functional dependency:
loan_number amount

• set of attributes whose values uniquely determine the values of the remaining
attributes e.g. a key defines an FD:
e.g. in EMP(eno,ename,sal) key FDs: eno → ename
 DEPT(dno,dname,floor) eno → sal

 WORKS-IN(eno,dno,hours) other FDs: {eno,dno} → hours
 for every pair of values of eno,dno there exists exactly one value for hours

• in general if and , then holds in the extension r(R) of R
 iff for any pair t1 and t2 tuples of r(R) such that t1(α) = t2(α),
 then it is also true that t1(β) = t2(β) (uniqueness of β values)

• we can use the FDs as
– constraints that we want to enforce (e.g. keys)
– for checking if the FDs are satisfied in the database R(A B C D)
 1 1 1 1
 A → B satisfied? no 1 2 1 2
 A → C -”- yes 2 2 2 2
 C → A -”- no 2 3 2 3
 AB → > D -”- yes 3 3 2 4

Functional Dependencies

⊆R ⊆R

FDs continued

• trivial dependencies: α → α
 α → β if β ⊆ α

• closure

– need all FDs
– some logically implied by others e.g. if A → B & B → C then A → C is

implied
• given F = set of FDs, find F+ (the closure) of all logically implied by F

Amstrong’s axioms
• reflexivity: if β ⊆ α then α → β (trivial FD)
• augmentation: if α → β then γα → γβ
• transitivity: if α → β & β → γ then α → γ

More FD Rules
• union rule: if α → β & α → γ then α → β γ
• decomposition rule: if α → βγ then α → β & α → γ
• pseudotransitivity rule: if α → β & γβ → δ then αγ → δ

Example: R(A,B,C,G,H,I)
 F={ A → B
 A → C
 CG → H
 CG → I
 B → H }
F+= { A → H /* A → B → H transitivity
 CG → HI /* CG → H, CG → I union rule
 AG → I /* A → C augmentation AG → CG → I
 AG → H } /* CG → H

• there is a non-trivial (exponential) algorithm for computing F+

Closure of Attribute Sets

• useful to find if a set of attributes is a superkey
• the closure α+ of a set of attributes α under F is the set of all attributes that

are functionally determined by α
• there is an algorithm that computes the closure

Example:

Note that since G is not on any right hand side, no subset of the attributes can
be a superkey unless it contains G for there is no FD to generate it.

 R(A,B,C,G,H,I) F={ A → B, A → C, CG → H, CG → I, B → H }
 Algorithm to Compute (AG)+
start with result=(AG)
A → B expands result=(AGB)
A → C expands result=(AGBC)
CG → H “-” result=(AGBCH)
CG → I “-” result=(AGBCHI)
B → H no more expansion

