
C. Relational algebra and SQL
 1. [5 pts] Construct the Cartesian product of the following three tables:

A1 A2 B1 B2 B3 B4 C1 C2 C3
1 red red 17 1972 VW Bob NYC 5000
2 blue blue 8 1968 Honda Elaine DC 18000

A1 A2 B1 B2 B3 B4 C1 C2 C3
1 red red 17 1972 VW Bob NYC 5000
1 red red 17 1972 VW Elaine DC 18000
1 red blue 8 1968 Honda Bob NYC 5000
1 red blue 8 1968 Honda Elaine DC 18000
2 blue red 17 1972 VW Bob NYC 5000
2 blue red 17 1972 VW Elaine DC 18000
2 blue blue 8 1968 Honda Bob NYC 5000
2 blue blue 8 1968 Honda Elaine DC 18000

 2. [5 pts] Construct the natural join, left outer join and right outer join tables for the following
tables:
name street city name branch_name salary
Coyote Toon Hollywood Coyote Mesa 1500
Rabbit Tunnel Carrotville Rabbit Mesa 1300
Smith Revolver Seattle Gates Redmond 1500
Williams Seaview Seattle Brin Mountainview 3000

natural(inner) join:
name street city branch_name salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300

left outer join:
name street city branch_name salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Smith Revolver Seattle null null
Williams Seaview Seattle null null

right outer join:
name street city branch_name salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Gates null null Redmond 1500
Brin null null Mountainview 3000

 3. [15 pts] Consider the following relational schema with the keys underlined:

country(name, code, capital, province)
city(name, country, province, population)
borders(country1, country2, length)
encompasses(country, continent, percentage)

 a) [5 pts] Does this schema allow you to represent the different spellings of a country's
capital (e.g. the capital of China can be Beijing or Peking)? Why?

NO. "code" is a key in the country table, thus only one tuple may exist in this table for each
country code, hence only one value in the "capital" column is allowed for each country.

 b) [10 pts] Write the following queries in the relational algebra:
- find the names of all countries in Europe that do not border Switzerland.

countries in Europe: CIE=name country=code∧continent="Europe"country×encompasses
countries bordering Switzerland:

countries in Europe not bordering Switzerland: CIE−CBS

- find the names of all cities in the world with population higher than every city in Peru.

cities in the world with population lower than some city in Peru:

all cities in the world: ALL=namecity
cities with population larger than all cities in Peru (population not smaller than any city in
Peru): ALL−LTP

 4. [15 pts] In the relational schema from point 3, write the following queries in SQL:

 a) [5 pts] Find all cities located in the same province as the capital city in France
select c1.name
from city c1, city c2, country co
where

co.name = 'France' and
c2.name = co.capital and
c1.province = c2.province

or (since province is an attribute in the country table - the capital province)

select ci.name
from city ci, country co
where

co.name = 'France' and ci.province = co.province

CBS=c٢.name country١=c١.code∧country٢=c٢.code∧c١.name="Switzerland" c١country×c٢country ×borders

LTP=c١.name c١.populationc٢.population∧c٢.country=co.code∧co.name="Peru"c١city×c٢city ×cocountry

 b) [5 pts] Find all countries not completely contained in Europe that border a country in
Europe.

select co1.name // first part are countries that border a country in Europe
from country co1, country co2, borders b, encompasses e
where

co1.code = b.country1 and
co2.code = b.country2 and
co2.code = e.country and
e.continent = 'Europe' and
e.percentage = 100 // note the question is a bit vague here - this requires a

 // country to border a country entirely contained in Europe
minus
select co.name // here we get rid of all countries completely contained in Europe
from country co, encompasses e
where

co.code = e.country and
e.continent = 'Europe' and
e.percentage = 100

 c) [5 pts] Increase the population of all cities in France by 10%.

update city
set population = population * 1.1
where

country in
(select country.code
 from country
 where

country.name = 'France'
)

 5. [20 pts] Using the relational schema from point 3, answer the following questions:

 a) [5 pts] Write an SQL query that returns the average length of borders shared by
Venezuela with its neighbors.

select avg(length)
from country co, borders bo
where

co.name = 'Venezuela' and
co.code = bo.country1

group by co.name

 b) [10 pts] Rewrite the following query so it doesn't use sub-queries:
select distinct co.name
from country co
where exists (select ci.name
 from city ci
 where ci.country = co.name and ci.population > 1000000)

select distinct co.name
from country co, city ci
where

ci.country = co.code and // Note I had a typo city.country refers to the country code
ci.population > 1000000

 c) [5 pts] Is the following query correct? If yes, explain what it does. If no, explain what
you think it is intended to do and how you would fix it. What assumption does this
query make about the "borders" table?

select co.name, sum(co2.population)
from country co, country co2, borders bo
where co.code = bo.country1
 and co2.code = bo.country2

The query is not correct because you cannot use aggregate functions (such as sum)
without a group by statement.

The assumption made by this query (as by all the solutions I showed above) is that the
"borders" relation is symmetric, i.e. both ("United States", "Canada"), and ("Canada",
"United States") occur in this table. Otherwise this query would be incomplete.

