Homework \# 2

Handed out: 2/21/08
Due: 2/28/08

1. Provide an example when the Boyer-Moore bad character rule will result in a running time of $\mathrm{O}(\mathrm{m} * \mathrm{n})$ ($\mathrm{m}-$ length of text, n - length of pattern).

For extra credit (+2 points) provide an example when the Boyer-Moore algorithm would perform fewer comparisons when the bad character rule is used alone, instead of combining it with the good suffix rule (problem 7 in Chapter 2 of Gusfield).
2. Problem 9 in Chapter 2 of Gusfield:

Let l'(i) denote the length of the largest suffix of $\mathrm{P}[\mathrm{i} . . \mathrm{n}]$ that is also a prefix of P , if one exists, otherwise let l'(i) be 0 .

Theorem: l'(i) equals the largest $\mathrm{j}<=|\mathrm{P}[\mathrm{i} . . \mathrm{n}]|$ (i.e. $\mathrm{j}<=\mathrm{n}-\mathrm{i}+1$) s.t. $\mathrm{N}_{\mathrm{j}}=\mathrm{j}$.
Prove the theorem and describe an algorithm that computes the l'(i) values in linear time. Explain the correctness of the algorithm.

Hint: algorithm is similar to the accumulation of the $L^{\prime}(i)$ values in the execution of Boyer-Moore.
3. Problem 6 in Chapter 3 of Gusfield:

For each of the n prefixes of P , we want to know whether prefix $\mathrm{P}[1 . . \mathrm{i}]$ is a periodic string. That is, for each i we want to know the largest $\mathrm{k}>1$ (if there is one) s.t. $\mathrm{P}[1 . . \mathrm{i}]$ can be written as a^{k} for some string a. Of course, we also want to know the period. Show how to determine this for all n prefixes in linear time in the length of P .

Hint: Z-algorithm.

