CMSC858P: Algorithms for Biosequence Analysis Lecture 1

Instructor: Mihai Pop TuTh: 2-3:15pm, CSIC 3118

INTRODUCTIONS

- Instructor: Mihai Pop (mpop at umiacs.umd.edu) Office hours: Wednesdays 11-12, AVW 3223
- You
- Class webpage: http://www.cbcb.umd.edu/confcour/CMSC858P.shtml

Overview of course

- No knowledge of biology required
- String algorithms relevant not only to biology
- Exact and inexact matching
- Exact and heuristic approaches
- Multiple sequence alignment
- Phylogenetics
- RNA and protein structure

Policies

- Attendance follow University policy
 - you must claim excused absences in writing
 - written documentation of illness is required (from Dr. not yourselves)
 - if possible inform me prior to the class you will skip
- Disabilities
 - must inform me during the first 2 weeks of the semester if special accommodations necessary
 - request letter from Office of Disability Support Services
- General communication is key
 - talk to me about any issues whether covered or not by University policies

Grading & workload

- Homework (10%)
- Goal: 5-10 assignments
 - simple
 - small programming assignments
 - "discovery" exercises (find something in public databases or using public software)
- Programming projects (15% + 15%)
 - Project 1 assigned by instructor (suffix tree)
 - Project 2 chosen by student
- In-class midterm (25%) & final (35%)
- Late policy: 1 day late 10 points off; 2 days late 20 points off; 3 days late – 0 points

Academic Honesty

http://www.studenthonorcouncil.umd.edu/code.html

- No cheating on homeworks/projects/exams
- No making up data/results
- No copying of other people's code
- You can work together on homeworks/projects but
 WRITE THE ANSWER BY YOURSELF

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Advice: how to do well in the class

- Start early on assignments at least read the assignment after class
- Ask questions during class, exams, office hours, using email (I'm available most time by email)
- Be inquisitive follow up on topics discussed in class: Google, Wikipedia
- Be social get to know some biologists learn what they do, what they are interested in
- Get to know your colleagues

The tree of life

http://www.fossilmuseum.net/Tree_of_Life/Domains_Archaea_Bacteria/

DNA – the code of life

- Pyrimidines C, T
- Sugar backbone (ticker tape)

pictures from wikipedia

Central dogma

The Central Dogma of Molecular Biology

AGGTACGCGTACCTGACAGG

http://www.accessexcellence.org/RC/VL/GG/central.html

Genes, transcription, translation

- DNA RNA Thymine replaced by Uracil (T-U)
- The transcribed segments are called genes
 ACCGUACCAUGUUA...AUAGGCUGAGCA
- AUG start codon (also amino-acid Methionine)
- UAA, UAG, UGA stop codons
- Genes are read in sets of 3 nucleotides during translation – 4³ = 64 possible combinations
- Each combination codes for one of 20 amino-acids the building blocks for proteins

Amino-acid translation table

Second letter

		U	С	А	G	
First letter	U	UUU } Phe UUC } UUA UUA } Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA UGG Trp	U C A G
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG Gln	CGU CGC CGA CGG	U C A G
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG Arg	U C A G
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G

Third letter

Protein structure

http://www.tulane.edu/~biochem/med/second.htm

Amino acids with hydrophobic side groups

hate water

Amino acids with hydrophilic side groups

like water

can't decide

Amino acids that are in between

Translation – complications

Alternative splicing examples

(a) Alternative selection of promoters (e.g., myosin primary transcript)

(b) Alternative selection of cleavage/polyadenylation sites (e.g., tropomyosin transcript)

RECAP

- DNA is a string formed with letters A, C, T, G (called nucleotides or bases)
- DNA is double-stranded allows replication: transfer of genetic "code" from parents to offspring
- DNA is naturally oriented from 5' to 3' and the two strands are anti-parallel
- If you know the sequence of one strand, you can obtain the sequence of the other by reversecomplementation
 - 5' AGACCTAGTGCACGGCTACTACC 3'
 - 5' CCATCATCGGCACGTGATCCAGA 3' Reverse
 - 5' GGTAGTAGCCGTGCACTAGGTCT 3' Complement

RECAP

- Central Dogma of molecular biology:
 - DNA RNA (transcription)
 - RNA Protein (translation)
- The transcribed segments of DNA are called "genes"
- Translation occurs in sets of 3 nucleotides codons
- Each codon encodes one of 20 amino-acids and 3 stop-codons
- In many eukaryotes the genes are split into multiple exons, separated by introns: DNA segments that will not get translated
- The protein corresponding to a gene is translated from an RNA representing the concatenation of the exons of the gene

Playing with DNA

Biologists can:

 Cut the DNA – restriction enzymes (often palindromes) (Nobel prize – Arber, Nathans, Smith)

5'GAATTC	5'G	AATTC3'
3'CTTAAG	3'CTTAA	G5'

• Attach "things" to DNA (either single or double-strand)

TAGGCACGTTGCAACTACGGC

TGCAACGT

 "Amplify" DNA – Polymerase Chain Reaction (Nobel prize – Mullis)

Polymerase chain reaction (PCR)

2. Anneal (attach

3. Extend

4. Repeat

How does PCR work?

- 1. Start: 1 double-stranded molecule
- 1. Denature: 2 singlestranded molecules
- 1. Anneal: 2 single-stranded molecules with primers attached
- 1. Extend: 2 double-stranded molecules – one "long" (L) strand and one "short" (S) (terminated at a primer)

- 2. Start: 2 double-stranded molecules: L+S, L+S
- 2. Denature: 2 x L strands, 2 x S strands
- 2. Anneal: all strands with primers attached
- 2. Extend: 2 double-stranded molecules: L+S, L+S, 2 double-stranded molecules: S+SS, S+SS SS – strand terminated at both ends with a primer

Quantitative PCR

- Measure # of PCR cycles needed to reach a certain concentration of DNA – depends on initial # of molecules
- Used in diagnostics: e.g. is this a random Anthrax spore from the environment or lots of spores from an attack

DNA sequencing

- Most techniques "trick" the polymerase into revealing the sequence
- The traditional method Sanger sequencing based on "terminator" bases – prevent the polymerase from extending the DNA
- Sanger sequencing is essentially PCR + terminator bases
- Other methods "spy" on the polymerase as it incorporates nucleotides

Sanger sequencing

Sanger, F, Coulson AR. *A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase*. J.Mol.Biol. 94 (1975)

TCTAATAG<mark>A</mark> AGATTATCTAACAGCTACCCTTCCATCA

CTAG

TCTAATT TCTAATTA TCTAATTAG TCTAATTAGA TCTAATTAGAT

pictures from http://www.uvm.edu/~cgep/Education/Sequence.html

The future of sequencing

- Roche/454 Life Sci. approx. 60-100 Mbp, 250 bp reads / 4 hr
- Illumina/Solexa approx. 1-2 Gbp, 30-40 bp reads / 3 day run
- Applied Biosystems/SOLiD approx 1 Gbp, 25-35 bp reads
- Helicos single molecule sequencing ~ 1Gbp/hour, 30-40 bp

Not yet available:

nanopore sequencing

The future of sequencing

• Single molecule sequencing - current technology requires many copies of DNA being sequenced - requires DNA amplification

• Massively-parallel sequencing - 100k sequencing reactions occuring at the same time

http://www.genetics.ucla.edu/sequencing/pyro.php

http://www.usgenomics.com

How they work

- Amplify DNA
 - Roche/454 emulsion PCR on beads (water droplets in oil)
 - Illumina/Solexa PCR on surface
 - ABI SOLiD emulsion PCR
- Sequence
 - Roche/454 pyrosequencing
 - Illumina/Solexa reversible terminators
 - ABI SOLiD sequencing by ligation two-color encoding

ABI SOLID

http://marketing.appliedbiosystems.com/images/Product/Solid_Knowledge/PDF/SOLiD_Brochure_092707.pdf