CMSC 858P Project2 Proposal

Phylogenetic tree construction using neighbor joining

Fatih Kaya

Phylogenetic trees

- Evolutionary relationships between genes and organisms
- The actual pattern of evolutionary history is the evolutionary tree

Construction

- Reconstruction is a statistical problem
- Three classes of methods
 - Maximum likelihood
 - Maximum parsimony
 - Distance based methods

Construction

- Maximum likelihood
 - Maximize the probability of the genetic data given the tree
 - Result in most accurate trees
 - Need long computation time to construct a tree
- Maximum Parsimony
 - Looks at the evolutionary changes required
 - The best tree is the one which needs the fewest changes
 - Long computation time is needed to construct a tree

Construction

- Distance based methods (Neighbor Joining)
 - Based on the minimum-evolution criteria
 - Find a tree such that total branch lengths of paths between sequences fit a matrix of pairwise distances between sequences.
 - Bottom-up clustering method

Neighbor Joining

- Build the distance matrix from the sequence data by acquiring a set of pairwise distance values. Then NJ tries to fit a tree to this matrix.
- Recursive algorithm
 - Use the distance matrix to find the closest pair
 - Add new node
 - Update distance matrix

Neighbor Joining

- Advantages
 - simple
 - fast
 - fit for sequences having high similarity scores
- Disadvantages
 - all sites are equally treated
 - not applicable to distantly related sequences
 - some of the information is lost