CMSC 858P Project2 Proposal

Phylogenetic tree construction using neighbor joining

Fatih Kaya

Phylogenetic trees

- Evolutionary relationships between genes and organisms
- The actual pattern of evolutionary history is the evolutionary tree

Construction

- Reconstruction is a statistical problem
- Three classes of methods
- Maximum likelihood
- Maximum parsimony
- Distance based methods

construction

- Maximum likelihood
- Maximize the probability of the genetic data given the tree
- Result in most accurate trees
- Need long computation time to construct a tree
- Maximum Parsimony
- Looks at the evolutionary changes required
- The best tree is the one which needs the fewest changes
- Long computation time is needed to construct a tree

Construction

- Distance based methods (Neighbor Joining)
- Based on the minimum-evolution criteria
- Find a tree such that total branch lengths of paths between sequences fit a matrix of pairwise distances between sequences.
- Bottom-up clustering method

Neighbor Joining

- Build the distance matrix from the sequence data by acquiring a set of pairwise distance values. Then NJ tries to fit a tree to this matrix.
- Recursive algorithm
- Use the distance matrix to find the closest pair
- Add new node
- Update distance matrix

Neighbor Joining

- Advantages
- simple
- fast
- fit for sequences having high similarity scores
- Disadvantages
- all sites are equally treated
- not applicable to distantly related sequences
- some of the information is lost

