Boyer-Moore Proof

Proving that Boyer Moore runs in linear time

When running the algorithm
the pattern is matched to the text until a mismatch found and then shift the pattern to the right. The goal is to shift by the least amount of characters.

Definitions

$|\boldsymbol{\alpha}|$ - period
Periodic string $\mathrm{S}=\alpha \alpha \alpha \alpha \ldots$ (α^{i})
many strings are not fully periodic
Semi-periodic $S=\operatorname{suf}(\alpha) \alpha^{i}$
e.g.

Prefix semi-periodic $\mathrm{S}=\alpha^{\text {i}} \operatorname{pref}(\alpha)$
Every semi-periodic string is also prefix semi-periodic. A is different, but both definitions work for such a string.

Lemma:

$$
\mathrm{S}=\delta \gamma=\gamma \delta \quad \Rightarrow \quad \delta=\alpha^{i}, \gamma=\alpha^{j}
$$

$$
\text { assume }|\mathrm{S}|=\mathrm{n} \text { and }|\delta|>|\gamma|
$$

$$
\delta \gamma=\gamma \delta
$$

$\delta^{\prime} \gamma^{\prime} \gamma=\gamma \gamma^{\prime} \delta \quad \Rightarrow \gamma^{\prime} \gamma=\gamma \gamma^{\prime}=>$ by induction δ is periodic so γ is also periodic

If P matches at positions p and p^{\prime} in text and $\mathrm{p}-\mathrm{p}^{\prime}<|\mathrm{p}| / 2$ then p is semi-periodic with period $\mathrm{p}^{\prime}-\mathrm{p}$

Definitions

t_{i} - set of characters that were matched at phase i
p - suffix of pattern that contains both t_{i} and one more mismatched character $|p|=\left|t_{i}\right|+1$
S_{i} - \# of characters that I jumped at phase i
β is the smallest possible period of α
$\alpha-\alpha=\beta^{1}-$ smallest β such that $\alpha=\beta^{1}$
$\mathrm{g}_{\mathrm{i}+1}-\#$ of characters matched in phase $\mathrm{i}+1$ not for the first time

We will prove that $\mathrm{g}_{\mathrm{i}}<3 \mathrm{~S}_{\mathrm{i}}$
$\sum_{i}\left(g_{i}+g_{i}^{\prime}\right) \leq m+\sum_{i} g_{i} \leq m+3 \sum_{i} S_{i} \leq m+3 m=4 m$
if $S_{i} \geq\left(\left|\mathrm{t}_{\mathrm{i}}\right|+1\right) / 3$ than $\mathrm{g}_{\mathrm{i}}<3 \mathrm{~S}_{\mathrm{i}}$ trivially
assume $\mathrm{S}_{\mathrm{i}} \geq\left(\left|\mathrm{t}_{\mathrm{i}}\right|+1\right) / 3$

I
If $S_{i} \geq\left(\left|t_{i}\right|+1\right) / 3$ then $p \& t_{i}$ are semi-periodic with period α. The proof is the same as Lemma (shifting strings)

II
At stage $h<i$ end of P cannot coincide with boundary of β unit

h

$|\beta| \beta|\beta| \beta|\beta| \beta \mid \rightarrow$ not possible

we know that after stage h we shifted pattern somewhere.
We have two possibilities:

1. Pattern matched the boundary of $\beta->$ clearly we could not shifted beyond $i->$ this option is not possible
2. Shifted such that we hit somewhere inside β boundary $->$ not possible either since β is the smallest possible shift and if such shift happened it would contradict that β is the smallest.

III
At any stage $\mathrm{h}<\mathrm{i}$ "work $<|\beta|$ in other words th overlaps $\mathrm{t}_{\mathrm{i}}<|\beta|$

x		β	β	β	

		β	β	β

\square
$=>$ this implies that β is not smallest $=>$ contradiction $=>$ at
any stage our work does not overlap

IV
At stage $h<i$ the rightmost end of pattern can only line up with the rightmost $|\beta|-1$ characters of t_{i} or leftmost $|\beta|$ characters of t_{i}. We prove that it is impossible to escape the boundaries of β.

We show that $\mathrm{g}_{\mathrm{i}}<3 \beta$, we know that $\beta \leq \mathrm{S}_{\mathrm{i}}=>\mathrm{g}_{\mathrm{i}} \leq 3 \mathrm{~S}_{\mathrm{i}}$
\# of characters I saw in past is bounded by shifts I do and \# of shifts is bounded by m $=>\mathrm{g}_{\mathrm{i}} \leq \mathrm{m}$

