02/12/08 Boyer-Moore Proof

р .	.1 .	D	16		•	1.	. •
Provin	o that	Rover	Moore	rung	1n	linear	time
110,111	5 mai	Doyor	110010	runs	m	mour	unit

т	
	X
P	

When running the algorithm

the pattern is matched to the text until a mismatch found and then shift the pattern to the right. The goal is to shift by the least amount of characters.

Definitions

 $|\alpha|$ - period

```
Periodic string S = \alpha \alpha \alpha \alpha \dots (\alpha^{i})
many strings are not fully periodic
```

```
Semi-periodic S = suf(\alpha) \alpha^{i}
```

e.g.

Prefix semi-periodic $S = \alpha^{i} pref(\alpha)$

Every semi-periodic string is also prefix semi-periodic. A is different, but both definitions work for such a string.

Lemma:

 $S = \delta \gamma = \gamma \delta \qquad \Longrightarrow \qquad \delta = \alpha^i, \ \gamma = \alpha^j$

assume |S| = n and $|\delta| > |\gamma|$

 $\delta\gamma=\gamma\delta$

 $\delta' \gamma' \gamma = \gamma \gamma' \delta' = \gamma \gamma' \gamma = \gamma \gamma' \Rightarrow$ by induction δ is periodic so γ is also periodic

If P matches at positions p and p' in text and p - p' < |p|/2 then p is semi-periodic with period p' - p

Definitions

 t_i – set of characters that were matched at phase i

p – suffix of pattern that contains both t_i and one more mismatched character $|p| = |t_i| + 1$

 S_i – # of characters that I jumped at phase i

 β is the smallest possible period of α

 $\alpha - \alpha = \beta^{1} - \text{smallest } \beta \text{ such that } \alpha = \beta^{1}$

 g_{i+1} – # of characters matched in phase i + 1 not for the first time

 $|\mathbf{t}_i| + 1 = \mathbf{g}_{i+1} + \mathbf{g'}_i$

We will prove that $g_i < 3S_i$

$$\sum_i (g_i + g'_i) \leq m + \sum_i g_i \leq m + 3 \sum_i S_i \leq m + 3m = 4m$$

if $S_i \ge (|t_i| + 1)/3$ than $g_i < 3S_i$ trivially

assume $S_i \ge (|t_i| + 1)/3$

Ι

If $S_i \ge (|t_i| + 1)/3$ then p & t_i are semi-periodic with period α . The proof is the same as Lemma (shifting strings)

Π

At stage h < i end of P cannot coincide with boundary of β unit

we know that after stage h we shifted pattern somewhere. We have two possibilities:

- 1. Pattern matched the boundary of β -> clearly we could not shifted beyond i -> this option is not possible
- 2. Shifted such that we hit somewhere inside β boundary -> not possible either since β is the smallest possible shift and if such shift happened it would contradict that β is the smallest.

III

At any stage h < i "work $< |\beta|$ in other words th overlaps $t_i < |\beta|$

=> this implies that β is not smallest => contradiction => at

any stage our work does not overlap

At stage h < i the rightmost end of pattern can only line up with the rightmost $|\beta|$ - 1 characters of t_i or leftmost $|\beta|$ characters of t_i .

We prove that it is impossible to escape the boundaries of β .

We show that $g_i < 3 \beta$, we know that $\beta \le S_i \implies g_i \le 3S_i$ # of characters I saw in past is bounded by shifts I do and # of shifts is bounded by $m \implies g_i \le m$

IV