
CMSC858P: Algorithms for Biosequence Analysis (Spring 2008)

Thursday February 28

Lecture: Dr. Mihai Pop

Scribe: Mohammadreza Ghodsi

Suffix trees properties recap
● Since there is a “$” after each suffix, each leaf in the suffix tree corresponds to one suffix.

● Each internal node of the tree corresponds to a common prefix of two suffixes in the string (that 
is a repeat)

● Suffix links can be used in different algorithms that traverse suffix trees. For example given the 
suffix tree for S1 if we are to find the longest common substring of S1 and S2 we can do the 
following: start matching S2 to suffix tree of S1. When a mismatch occurs follow the suffix link 
(if mismatch occurs in the root then just shift to the next character in S2). The deepest node that 
we get to during this process corresponds to a longest common substring of S1 and S2.

Figure: Suffix tree for the string BANANA padded with $. The six paths from the 
root to a leaf (shown as boxes) correspond to the six suffixes A$, NA$, ANA$, 
NANA$, ANANA$ and BANANA$. The numbers in the boxes give the start 
position of the corresponding suffix. Suffix links drawn dashed.

Longest prefix-suffix match
Given k strings S1, S2, ... , Sk we wish to find for every pair Si and Sj, the longest suffix of Si that matches 
a prefix of Sj.

In order to do this efficiently we first build a suffix tree for all of the strings. Our goal is then to find 
internal nodes on the path from the leaf corresponding to complete Sj to the root that are connected by a 
single “$” to a leaf (which corresponds to a suffix of some string). Note that if more than one suffix of 



Si match prefixes of Sj then we should report the longest one.

First, for each internal node of the tree we need to compute L(v), a linked list of all children of v that 
are attached to it by a “$”. We can do this in one traversal of the tree. The following pseudo code does a 
depth first search traversal of the tree. 

for each c in children of v do
if c is a $-leaf  add c to L(v)
recurse on non-leaf children of v

This computation is linear in the size of the tree (and therefore in the sum of sizes of input strings)

Next, we do another DFS of the tree, maintaining k stacks, one for each string. During the execution of 
the algorithm each stack will contain the places that we have seen each string in L(v) for all v on the 
path from current node to the root. On top of the stack i would be the last (deepest) node that had a $-
child to a suffix of i.

Now to during traversal of tree whenever we come across a leaf that corresponds to complete string Sj 

all we need to do is to look at the top items on all the stacks to find the longest suffix of any string Si 

that matches a prefix of Sj.

Suffix Arrays
A suffix array is an array giving the suffixes of a string in lexicographical order. If we sort the suffixes 
of the word “mississippi” we would get

T11 = i
T8  = ippi
T5  = issippi
T2  = ississippi
T1  = mississippi
T10 = pi
T9  = ppi
T7  = sippi
T4  = sissippi
T6  = ssippi
T3  = ssissippi

The space required for this is quadratic but we can just store the suffix numbers (here 11,8,5,...). That 
would make the space requirement linear in the size of the input.

If we build a suffix array of text, the naïve algorithm for searching a pattern would be a simple binary 
search. this would O(n log m) time (where n and m are sizes of pattern and text respectively). This is 



worse than O(n) we would get using a suffix tree. We can improve search time by taking advantage of 
the fact that the strings are lexicographically ordered.

First attempt to improve running time is when during the binary search we are comparing pattern to 
the middle suffix between two (left and right) suffixes we can avoid comparing the first characters of 
the pattern that have already been matched to both left and right suffixes. More precisely if the first l 
characters of pattern match to L and the first r characters of pattern match to R. we can start matching 
pattern to M right after position min(l,r) .

This would result in practice in O(n + log m) running time. But in order to be able to prove a bound for 
the worst case we need a more clever trick.

A second provably better in the worst case implementation is to store some additional information. 
namely for each i, j we store LCP(i,j) which is the length of the longest common prefix of suffix i and 
suffix j. 

let l be the number of characters from the pattern that match suffix L. and similarly for r and R. If we 
are about to compare pattern P to M then there are a few cases (note that we already know L<P<R):

● l<LCP(L,M): then we just need to recurse on [M,R]. no character comparison is needed

● l>LCP(L,M): again without any character comparison we know P is to the left of M so we 
would recurse on [L,M]

● l=LCP(L,M): in this case we actually have to continue comparing characters of the pattern to 
string M starting from position LCP(L,M) onward.

We can do this on the side which matched pattern the longest. So without loss of generality we can 
assume l>r. The total number of characters that match in this algorithm is O(n). The number of 
mismatches is equal to the number of recursions and therefore is O(log m). So total running time is O(n 
+ log m).

 Title:figure.fig
 Creator:fig2dev Version 3.2 Patchlevel 5
 CreationDate:Sun Mar  2 23:59:28 2008

 Title:figure2.fig
 Creator:fig2dev Version 3.2 Patchlevel 5
 CreationDate:Mon Mar  3 00:12:35 2008



In the next session we will see:

How to compute suffix arrays.

How to compute LCP values.


	Suffix trees properties recap
	Longest prefix-suffix match
	Suffix Arrays

