Boyer Moore

```
T = XPBCTBXABPQXCTBPQ
    X||||
P = TPABXAB
        | X
    TPABXAB // The non matching character existed on position 1
of the pattern
    TPABXAB // The non matching character did not exist
```

Bad Character Rule: Every time a match fails the algorithm looks in the pattern if the character that didn't match exists in the pattern. If yes shift the pattern to align the nonmatching character with the corresponding one in the pattern.

Before the algorithm some preprocessing is necessary to find out the information what character is on what position. We build a table with all characters in the text??? and its right most position:

Character	Position
T	1
P	2
A	6
B	7
X	5
Q	0

When matching this table is used to find an occurence of the non-matching character.
Function R(i,C) finds the rightmost position i of character C inn pattern Examples:

- $\mathrm{R}(4, \mathrm{~A})=3$
- $\mathrm{R}(7, \mathrm{~A})=6$

How is the performance of this algorithm?
Three different approaches:

- trivial: poor running time
- better: $|\mathrm{P}| *|\mathrm{E}|$
- best: |P|

Better Approach: Store the position of all characters occuring in the patter and the position in the pattern:

Character	Position
T	1
P	2
A	3,6
B	4,7
X	5

Question: Would it take too much time to go through the list?

- At most we spent twice as much as characters in the pattern.
- While matching we're doing at least the matching work, so the time is not wasted

Works very well for large alphabets and infrequent Characters. Question: "Can we tweak the Boyer Moore algorithm to do well in all situations?"

1. Approach: After a mismatch occurs: Can we find a position to which we can shift the pattern to so that it matches the already observed character sequence?

Example:

```
000000000000000000000000ABCDE000000000000
    X|||
    OooooBCDEOoooBCDE
            |||
    oooooBCDEooooBCDE
```

Good Suffix Rule: After we find a mismatch we want to find a sequence in the pattern that matches the sequence in the text that was just observed but which has a different character to the left (since it previously caused the mismatch)

The running time is $4 *$. In general, however, the performance is much better but it is difficult how the bad character rule can enhance performance.

For every i we store a value L(i), which is the rightmost position in P s.t. $\mathrm{P}[\mathrm{i} . . \mathrm{n}]$ matches suffix of P[1..L(i)]

$L^{\prime}(\mathrm{i})$-> $\mathrm{L}(\mathrm{i})$ and $\mathrm{P}[\mathrm{i}-$? $\left.)!=\mathrm{P}[\mathrm{L}(\mathrm{i})-|\mathrm{P}|+\mathrm{i}-2]\right]$
Use approach of Z-Boxes to enhance performance.
$\mathrm{L}(\mathrm{K})=\mathrm{L}(\mathrm{n}-\mathrm{Z}(\mathrm{i})+1)$

How do we find the longest prefix/suffix that mathches using the Z-Values?
$P(i)=$ length of longest prefix of pattern P that matches suffix of pattern P.
We are looking for $\mathrm{a} \mathrm{Z}[\mathrm{j}]$???

```
1 k h m
00000000000000000000000000000000
    |
    0000000
    1 n
```

$\mathrm{R}(\mathrm{T}[\mathrm{h}])$: Tells us how much we can shift
$R(T[h])$-> K' = K + i - R(T[h])

Take max of

- K' tells us what to do with the bad character rule // Jump to the position in the pattern that matches the section of the text
- $\mathrm{K}=K+n-L^{\prime}(i)+1 / /$ The sequence in the pattern that failed to match occurs in the beginning of the pattern

```
k=n
while k<=m
    i=n
    h=k
    while i>0 AND P[i]=T[h] // i should not go beyond the end of the pattern
and ...
        i --j h=j
    if i= 0 -> match // perfect match
```

