
Boyer Moore

T = XPBCTBXABPQXCTBPQ
 X||||
P = TPABXAB
 | X
 TPABXAB // The non matching character existed on position 1
of the pattern
 TPABXAB // The non matching character did not exist

Bad Character Rule: Every time a match fails the algorithm looks in the pattern if the
character that didn't match exists in the pattern. If yes shift the pattern to align the non-
matching character with the corresponding one in the pattern.

Before the algorithm some preprocessing is necessary to find out the information what
character is on what position. We build a table with all characters in the text??? and its right
most position:

Character Position
T 1
P 2
A 6
B 7
X 5
Q 0

When matching this table is used to find an occurence of the non-matching character.

Function R(i,C) finds the rightmost position i of character C inn pattern Examples:

• R(4,A) = 3
• R(7,A) = 6

How is the performance of this algorithm?

Three different approaches:

• trivial: poor running time
• better: |P|*|E|
• best: |P|

Better Approach: Store the position of all characters occuring in the patter and the position in
the pattern:

Character Position
T 1
P 2
A 3,6
B 4,7
X 5

Question: Would it take too much time to go through the list?

• At most we spent twice as much as characters in the pattern.
• While matching we're doing at least the matching work, so the time is not wasted

Works very well for large alphabets and infrequent Characters. Question: "Can we tweak the
Boyer Moore algorithm to do well in all situations?"

1. Approach: After a mismatch occurs: Can we find a position to which we can shift the
pattern to so that it matches the already observed character sequence?

Example:

ooooooooooooooooooooooooABCDEoooooooooooo
 X||||
 oooooBCDEooooBCDE
 ||||
 oooooBCDEooooBCDE

Good Suffix Rule: After we find a mismatch we want to find a sequence in the pattern that
matches the sequence in the text that was just observed but which has a different character to
the left (since it previously caused the mismatch)

The running time is 4*n. In general, however, the performance is much better but it is difficult
how the bad character rule can enhance performance.

For every i we store a value L(i), which is the rightmost position in P s.t. P[i..n] matches
suffix of P[1..L(i)]

oooooooABCDEFGoooooooooooZBCDEFG
 | |
 L(i) i

L'(i) -> L(i) and P[i-?) != P[L(i)-|P|+i-2]]

Use approach of Z-Boxes to enhance performance.

L(K)=L(n-Z(i)+1)

How do we find the longest prefix/suffix that mathches using the Z-Values?

P(i) = length of longest prefix of pattern P that matches suffix of pattern P.

We are looking for a Z[j]???

1 k h m
oooooooooooooooooooooooooooooooo
 |
 ooooooo
 1 i n

R(T[h]) : Tells us how much we can shift

R(T[h]) -> K' = K + i - R(T[h])

Take max of

• K' tells us what to do with the bad character rule // Jump to the position in the pattern
that matches the section of the text

• K = K + n - L'(i) + 1 // The sequence in the pattern that failed to match occurs in the
beginning of the pattern

k=n
while k<=m
 i=n
 h=k
 while i>0 AND P[i]=T[h] // i should not go beyond the end of the pattern
and ...
 i --j h=j
 if i= 0 -> match // perfect match

