
Advanced SQL

Domain Types in SQL
• char(n). Fixed length character string, with user-specified

length n.
• varchar(n). Variable length character strings, with user-

specified maximum length n.
• int. Integer (a finite subset of the integers that is machine-

dependent).
• smallint. Small integer (a machine-dependent subset of the

integer domain type).
• numeric(p,d). Fixed point number, with user-specified

precision of p digits, with n digits to the right of decimal point.
• real, double precision. Floating point and double-precision

floating point numbers, with machine-dependent precision.
• float(n). Floating point number, with user-specified precision of

at least n digits.
• More are covered in Chapter 4.

Create Table Construct
• An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

– r is the name of the relation
– each Ai is an attribute name in the schema of relation r
– Di is the data type of values in the domain of attribute Ai

• Example:
 create table instructor (

 ID char(5),
 name varchar(20) not null,
 dept_name varchar(20),
 salary numeric(8,2))

• insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);
• insert into instructor values (‘10211’, null, ’Biology’, 66000);

Integrity Constraints in Create Table
• not null
• primary key (A1, ..., An)
• foreign key (Am, ..., An) references r

Example: Declare branch_name as the primary key for branch

create table instructor (
 ID char(5),
 name varchar(20) not null,
 dept_name varchar(20),
 salary numeric(8,2),
 primary key (ID),
 foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

And a Few More Relation Definitions
• create table student (

 ID varchar(5) primary key,
 name varchar(20) not null,
 dept_name varchar(20),
 tot_cred numeric(3,0),
 foreign key (dept_name) references department));

• create table takes (
 ID varchar(5) primary key,
 course_id varchar(8),
 sec_id varchar(8),
 semester varchar(6),
 year numeric(4,0),
 grade varchar(2),
 foreign key (ID) references student,
 foreign key (course_id, sec_id, semester, year)
references section);

And more still
• create table course (

 course_id varchar(8) primary key,
 title varchar(50),
 dept_name varchar(20),
 credits numeric(2,0),
 foreign key (dept_name) references department));

Drop and Alter Table Constructs
• drop table
• alter table

– alter table r add A D
• where A is the name of the attribute to be added to relation r and D is the

domain of A.
• All tuples in the relation are assigned null as the value for the new attribute.

– alter table r drop A
• where A is the name of an attribute of relation r
• Dropping of attributes not supported by many databases.

Modification of the Database – Deletion
• Delete all instructors

delete from instructor

• Delete all instructors from the Finance department
 delete from instructor
 where dept_name= ’Finance’;

• Delete all tuples in the instructor relation for those
instructors associated with a department located in the
Watson building.
delete from instructor
where dept name in (select dept name
 from department
 where building = ’Watson’);

Example Query
• Delete all instructors whose salary is less than the average

salary of instructors

delete from instructor
where salary< (select avg (salary) from instructor);

 Problem: as we delete tuples from deposit, the average salary changes

 Solution used in SQL:

 1. First, compute avg salary and find all tuples to delete

 2. Next, delete all tuples found above (without

 recomputing avg or retesting the tuples)

Modification of the Database – Insertion
• Add a new tuple to course

 insert into course
 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

• or equivalently

 insert into course (course_id, title, dept_name, credits)
 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

• Add a new tuple to student with tot_creds set to null
 insert into student
 values (’3003’, ’Green’, ’Finance’, null);

Modification of the Database – Insertion
• Add all instructors to the student relation with tot_creds set

to 0
 insert into student

select ID, name, dept_name, 0
 from instructor

• The select from where statement is evaluated fully before
any of its results are inserted into the relation (otherwise
queries like

insert into table1 select * from table1
would cause problems)

Modification of the Database – Updates
• Increase salaries of instructors whose salary is over

$100,000 by 3%, and all others receive a 5% raise
– Write two update statements:

 update instructor
 set salary = salary * 1.03
 where salary > 100000;
 update instructor
 set salary = salary * 1.05
 where salary <= 100000;

– The order is important
– Can be done better using the case statement (next slide)

Case Statement for Conditional Updates
• Same query as before but with case statement

 update instructor
 set salary = case
 when salary <= 100000 then salary * 1.05
 else salary * 1.03
 end

Updates with Scalar Subqueries
• Recompute and update tot_creds value for all students
 update student S

 set tot_cred = (select sum(credits)
 from takes natural join course
 where S.ID= takes.ID and
 takes.grade <> ’F’ and
 takes.grade is not null);

• Sets tot_creds to null for students who have not taken any
course

• Instead of sum(credits), use:
 case

 when sum(credits) is not null then sum(credits)
 else 0
 end

ViewsViews
• In some cases, it is not desirable for all users to see the

entire logical model (that is, all the actual relations stored in
the database.)

• Consider a person who needs to know an instructors name
and department, but not the salary. This person should see
a relation described, in SQL, by

 select ID, name, dept_name
 from instructor

• A view provides a mechanism to hide certain data from the
view of certain users.

• Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

View DefinitionView Definition
• A view is defined using the create view statement which

has the form

create view v as < query expression >

where <query expression> is any legal SQL expression.
The view name is represented by v.

• Once a view is defined, the view name can be used to refer
to the virtual relation that the view generates.

• View definition is not the same as creating a new relation by
evaluating the query expression
– Rather, a view definition causes the saving of an expression; the

expression is substituted into queries using the view.

Example ViewsExample Views
• A view of instructors without their salary

 create view faculty as
 select ID, name, dept_name
 from instructor

• Find all instructors in the Biology department
 select name
 from faculty
 where dept_name = ‘Biology’

• Create a view of department salary totals
 create view departments_total_salary(dept_name, total_salary) as
 select dept_name, sum (salary)
 from instructor
 group by dept_name;

Views Defined Using Other ViewsViews Defined Using Other Views
• create view physics_fall_2009 as

 select course.course_id, sec_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = ’Physics’
 and section.semester = ’Fall’
 and section.year = ’2009’;

• create view physics_fall_2009_watson as
 select course_id, room_number
 from physics_fall_2009
 where building= ’Watson’;

View ExpansionView Expansion
• Expand use of a view in a query/another view

create view physics_fall_2009_watson as
(select course_id, room_number
from (select course.course_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = ’Physics’
 and section.semester = ’Fall’
 and section.year = ’2009’)
where building= ’Watson’;

Views Defined Using Other ViewsViews Defined Using Other Views
• One view may be used in the expression defining another

view,
• A view relation v1 is said to depend directly on a view

relation v2 if v2 is used in the expression defining v1

• A view relation v1 is said to depend on view relation v2 if
either v1 depends directly to v2 or there is a path of
dependencies from v1 to v2

• A view relation v is said to be recursive if it depends on
itself.

View ExpansionView Expansion
• A way to define the meaning of views defined in terms of

other views.
• Let view v1 be defined by an expression e1 that may itself

contain uses of view relations.
• View expansion of an expression repeats the following

replacement step:
repeat

Find any view relation vi in e1

Replace the view relation vi by the expression defining vi
until no more view relations are present in e1

• As long as the view definitions are not recursive, this loop
will terminate.

Update of a ViewUpdate of a View
• Add a new tuple to faculty view which we defined earlier

insert into faculty values (’30765’, ’Green’, ’Music’);
This insertion must be represented by the insertion of the
tuple

(’30765’, ’Green’, ’Music’, null)
into the instructor relation.

Some Updates cannot be Translated UniquelySome Updates cannot be Translated Uniquely

• create view instructor_info as
 select ID, name, building
 from instructor, department
 where instructor.dept_name= department.dept_name;

• insert into instructor info values (’69987’, ’White’, ’Taylor’);
• which department, if multiple departments in Taylor?
• what if no department is in Taylor?

• Most SQL implementations allow updates only on simple
views
– The from clause has only one database relation.
– The select clause contains only attribute names of the relation, and

does not have any expressions, aggregates, or distinct
specification.

– Any attribute not listed in the select clause can be set to null
– The query does not have a group by or having clause.

And Some Not at AllAnd Some Not at All
• create view history_instructors as

 select *
 from instructor
 where dept_name= ’History’;

• Insert (’25566’, ’Brown’, ’Biology’, 100000) into
history_instructors

TransactionsTransactions
• Unit of work
• Atomic transaction

– either fully executed or rolled back as if it never occurred
• Isolation from concurrent transactions
• Transactions begin implicitly

– Ended by commit work or rollback work
• But default on most databases: each SQL statement

commits automatically
– Can turn off auto commit for a session (e.g. using API)
– In SQL:1999, can use: begin atomic …. end

Integrity ConstraintsIntegrity Constraints
• Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.
– A checking account must have a balance greater than $10,000.00.
– A salary of a bank employee must be at least $4.00 an hour.
– A customer must have a (non-null) phone number.

 Constraints on a Single Relation Constraints on a Single Relation
• not null
• primary key
• unique
• check (P), where P is a predicate

Not Null and Unique Constraints Not Null and Unique Constraints
• not null

– Declare name and budget to be not null
 name varchar(20) not null
 budget numeric(12,2) not null

• unique (A1, A2, …, Am)
– The unique specification states that the attributes A1, A2, … Am

form a candidate key.
– Candidate keys are permitted to be null (in contrast to primary

keys).

The check clauseThe check clause
• check (P)
 where P is a predicate

Example: ensure that semester is one of fall, winter, spring or
summer:

create table section (
 course_id varchar (8),
 sec_id varchar (8),
 semester varchar (6),
 year numeric (4,0),
 building varchar (15),
 room_number varchar (7),
 time slot id varchar (4),
 primary key (course_id, sec_id, semester, year),
 check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’))
);

Referential IntegrityReferential Integrity
• Ensures that a value that appears in one relation for a given

set of attributes also appears for a certain set of attributes in
another relation.
– Example: If “Biology” is a department name appearing in one of the

tuples in the instructor relation, then there exists a tuple in the
department relation for “Biology”.

• Let A be a set of attributes. Let R and S be two relations
that contain attributes A and where A is the primary key of
S. A is said to be a foreign key of R if for any values of A
appearing in R these values also appear in S.

Cascading Actions in Referential IntegrityCascading Actions in Referential Integrity
• create table course (

 course_id char(5) primary key,
 title varchar(20),
 dept_name varchar(20) references department
)

• create table course (
 …
 dept_name varchar(20),
 foreign key (dept_name) references department
 on delete cascade
 on update cascade,
 . . .
)

• alternative actions to cascade: set null, set default

Integrity Constraint Violation During TransactionsIntegrity Constraint Violation During Transactions
• E.g.,

create table person (
ID char(10),
name char(40),
mother char(10),
father char(10),
primary key ID,
foreign key father references person,
foreign key mother references person)

• How to insert a tuple?
• What if mother or father is declared not null?

– constraint father_ref foreign key father references person,
 constraint mother_ref foreign key mother references person)

– set constraints father_ref, mother_ref deferred

Complex Check ClausesComplex Check Clauses
• check (time_slot_id in (select time_slot_id from time_slot))

– why not use a foreign key here?
• Every section has at least one instructor teaching the

section.
– how to write this?

• Unfortunately: subquery in check clause not supported by
pretty much any database
– Alternative: triggers (later)

• create assertion <assertion-name> check <predicate>;
– Also not supported by anyone

Built-in Data Types in SQL Built-in Data Types in SQL
• date: Dates, containing a (4 digit) year, month and date

– Example: date ‘2005-7-27’
• time: Time of day, in hours, minutes and seconds.

– Example: time ‘09:00:30’ time ‘09:00:30.75’
• timestamp: date plus time of day

– Example: timestamp ‘2005-7-27 09:00:30.75’
• interval: period of time

– Example: interval ‘1’ day
– Subtracting a date/time/timestamp value from another gives an

interval value
– Interval values can be added to date/time/timestamp values

