
Advanced topics

“Special” databases
• Biological data
• Geographic data – GIS
• Movies
• etc.

• New types of queries
• New ways of indexing data
• Storing/retrieval issues (e.g. large sizes, streaming, real-

time, etc.)

Examples
• Biological data

– refinement of “like” queries: find sequences that are “related”

• Spatial/geographic data (GIS)
– find all Home Depot stores within 15 miles of Baltimore
– find a point in Maryland that's farther than 15 miles from the

nearest Lowes and is densely populated
– find all cities within lat/lon square: 39.00 N, 40.00 N, 76.00W,

77.00W.

– special/spatial index: R-tree

Query: 1 MSVMYKKILYPTDFSETAEIALKHVKAFKTLKAEEVILLHVIDEREIKKRDIFSLLLGVA 60
 M M++K+L+PTDFSE A A++ + ++ EVILLHVIDE +++ L+ G +
Sbjct: 1 MIFMFRKVLFPTDFSEGAYRAVEVFEKRNKMEVGEVILLHVIDEGTLEE-----LMDGYS 55

R-tree
• Binary search tree on Y-coordinate
• Each internal node contains search structure on X-

coordinate for all points with Y coordinates in the
corresponding subtree

OLAP
●On-line Analytical Processing
●Why ?

● Exploratory analysis
● Interactive
● Different queries than typical SQL queries

● Data CUBE
● A summary structure used for this purpose

● E.g. give me total sales by zipcode; now show me total sales by customer employment
category

● Much much faster than using SQL queries against the raw data
● The tables are huge

●Applications:
● Sales reporting, Marketing, Forecasting etc etc

Cross Tabulation of sales by item-name and color

• The table above is an example of a cross-tabulation
(cross-tab), also referred to as a pivot-table.
– Values for one of the dimension attributes form the row headers
– Values for another dimension attribute form the column headers
– Other dimension attributes are listed on top
– Values in individual cells are (aggregates of) the values of the

dimension attributes that specify the cell.

Data Cube
■ A data cube is a multidimensional generalization of a cross-tab
■ Can have n dimensions; we show 3 below
■ Cross-tabs can be used as views on a data cube

Data federation
• E.g. biological data:

– VectorBase – organisms that carry human disease (e.g. mosquito)
– Flybase – fruit flies
– InsectBase???

• Federation -combining multiple databases into a single
virtual database

• Has many issues:
– schema translation?
– common vocabulary? (e.g. ontologies, semantic web)
– privacy/security
– performance

• Non-biological: SkyServer/SkyQuery (Sloan Digital Sky
Survey)

Data warehouses
• Brute-force solution to federation:

– download all databases
– convert them to a common schema
– provide a common interface

• Problems:
– data storage & duplication
– hard to keep up to date
– performance (single point of entry/ failure)

• Examples:
– GenBank (US biological data repository)
– Ensembl (EU biological data repository)

Data Mining
• Searching for patterns in data

– Typically done in data warehouses
●Association Rules:

● When a customer buys X, she also typically buys Y
● Use ?

● Move X and Y together in supermarkets
● A customer buys a lot of shirts

● Send him a catalogue of shirts
● Patterns are not always obvious

● Classic example: It was observed that men tend to buy beer and diapers together
(may be an urban legend)

●Other types of mining
● Classification
● Decision Trees

XML
• Extensible Markup Language
• Derived from SGML (Standard Generalized Markup

Language)
– Similar to HTML, but HTML is not extensible

• Extensible == can add new tags etc

• Emerging as the wire format (data interchange format)

XML

 <bank-1>
 <customer>

 <customer-name> Hayes </customer-name>
 <customer-street> Main </customer-street>
 <customer-city> Harrison </customer-city>
 <account>

 <account-number> A-102 </account-number>
 <branch-name> Perryridge </branch-name>
 <balance> 400 </balance>

 </account>
 <account>
 …
 </account>

 </customer>
 .
 .

 </bank-1>

Attributes
• Elements can have attributes

 <account acct-type = “checking” >
 <account-number> A-102 </account-number>
 <branch-name> Perryridge </branch-name>
 <balance> 400 </balance>

 </account>

• Attributes are specified by name=value pairs inside the starting tag
of an element

• An element may have several attributes, but each attribute name can
only occur once

• <account acct-type = “checking” monthly-fee=“5”>

Attributes Vs. Subelements
• Distinction between subelement and attribute

– In the context of documents, attributes are part of markup, while subelement
contents are part of the basic document contents

– In the context of data representation, the difference is unclear and may be
confusing

• Same information can be represented in two ways
– <account account-number = “A-101”> …. </account>
– <account>

 <account-number>A-101</account-number> …
</account>

– Suggestion: use attributes for identifiers of elements, and use subelements for
contents

Namespaces
• XML data has to be exchanged between organizations
• Same tag name may have different meaning in different

organizations, causing confusion
• Specifying a unique string as an element name avoids

confusion
• Better solution: use unique-name:element-name
• Avoid using long unique names all over document by using

XML Namespaces
<bank Xmlns:FB=‘http://www.FirstBank.com’>
 …

 <FB:branch>
 <FB:branchname>Downtown</FB:branchname>

 <FB:branchcity> Brooklyn </FB:branchcity>
 </FB:branch>
…

</bank>

http://www.firstbank.com/
http://www.firstbank.com/

Document Type Definition (DTD)
• The type of an XML document can be specified using a

DTD
• DTD constraints structure of XML data

– What elements can occur
– What attributes can/must an element have
– What subelements can/must occur inside each element, and how

many times.
• DTD does not constrain data types

– All values represented as strings in XML
• DTD syntax

– <!ELEMENT element (subelements-specification) >
– <!ATTLIST element (attributes) >

• Also – XML Schema (not covered -read in book & online)

Bank DTD

<!DOCTYPE bank [
<!ELEMENT bank ((account | customer | depositor)+)>
<!ELEMENT account (account-number branch-name balance)>
<! ELEMENT customer(customer-name customer-street
 customer-city)>
<! ELEMENT depositor (customer-name account-number)>
<! ELEMENT account-number (#PCDATA)>
<! ELEMENT branch-name (#PCDATA)>
<! ELEMENT balance(#PCDATA)>
<! ELEMENT customer-name(#PCDATA)>
<! ELEMENT customer-street(#PCDATA)>
<! ELEMENT customer-city(#PCDATA)>

]>

IDs and IDREFs
• An element can have at most one attribute of type ID
• The ID attribute value of each element in an XML

document must be distinct
– Thus the ID attribute value is an object identifier

• An attribute of type IDREF must contain the ID value of an
element in the same document

Bank DTD with Attributes
• Bank DTD with ID and IDREF attribute types.

 <!DOCTYPE bank-2[
 <!ELEMENT account (branch, balance)>
 <!ATTLIST account
 account-number ID # REQUIRED

 owners IDREFS # REQUIRED>
 <!ELEMENT customer(customer-name, customer-street,

 custome-city)>
 <!ATTLIST customer

 customer-id ID # REQUIRED
 accounts IDREFS # REQUIRED>

 … declarations for branch, balance, customer-name,
 customer-street and customer-city
]>

XML data with ID and IDREF attributes

<bank-2>
<account account-number=“A-401” owners=“C100 C102”>
 <branch-name> Downtown </branch-name>
 <balance> 500 </balance>
</account>
<customer customer-id=“C100” accounts=“A-401”>
 <customer-name>Joe </customer-name>
 <customer-street> Monroe </customer-street>
 <customer-city> Madison</customer-city>
</customer>
<customer customer-id=“C102” accounts=“A-401 A-402”>
 <customer-name> Mary </customer-name>
 <customer-street> Erin </customer-street>
 <customer-city> Newark </customer-city>
</customer>

</bank-2>

Querying and Transforming XML Data
• Standard XML querying/translation languages

– XPath
• Simple language consisting of path expressions
• Forms a basic component of the next two

– XSLT
• Simple language designed for translation from XML to XML and XML to

HTML

– XQuery
• An XML query language with a rich set of features

Tree Model of XML Data
• Query and transformation languages are based on a tree

model of XML data

bank-2

account customer [customer-id=“C100”,
accounts=“A-401

branch-name

Downtown

customer [..]

balance

500

XPath
• /bank-2/customer/customer-name

<customer-name>Joe</customer-name>
<customer-name>Mary</customer-name>

• /bank-2/customer/customer-name/text()
Joe
Mary

• /bank-2/account[balance > 400]
– returns account elements with a balance value greater than 400

• /bank-2/account[balance > 400]/@account-number
– returns the account numbers of those accounts with balance > 400

Functions in XPath
• /bank-2/account[customer/count() > 2]

– Returns accounts with > 2 customers

• Boolean connectives and and or and function not() can be
used in predicates

• IDREFs can be referenced using function id()
– E.g. /bank-2/account/id(@owner)

• returns all customers referred to from the owners attribute of account
elements.

More XPath Features
• “//” can be used to skip multiple levels of nodes

– E.g. /bank-2//customer-name
• finds any customer-name element anywhere under the /bank-2 element,

regardless of the element in which it is contained.

• Wild-cards
– /bank-2/*/customer-name
– Match any element name

XSLT
• A stylesheet stores formatting options for a document,

usually separately from document
– E.g. HTML style sheet may specify font colors and sizes for

headings, etc.
• The XML Stylesheet Language (XSL) was originally

designed for generating HTML from XML
• XSLT is a general-purpose transformation language

– Can translate XML to XML, and XML to HTML
• XSLT transformations are expressed using rules called

templates
– Templates combine selection using XPath with construction of

results

XSLT Templates
• Example of XSLT template with match and select part
 <xsl:template match=“/bank-2/customer”>

 <xsl:value-of select=“customer-name”/>
 </xsl:template>
 <xsl:template match=“*”/>
• The match attribute of xsl:template specifies a pattern in

XPath
• Elements in the XML document matching the pattern are

processed by the actions within the xsl:template element
– xsl:value-of selects (outputs) specified values (here, customer-

name)
• For elements that do not match any template

– Attributes and text contents are output as is
– Templates are recursively applied on subelements

• The <xsl:template match=“*”/> template matches all
elements that do not match any other template
– Used to ensure that their contents do not get output.

Creating XML Output
• Any text or tag in the XSL stylesheet that is not in the xsl

namespace is output as is
• E.g. to wrap results in new XML elements.
 <xsl:template match=“/bank-2/customer”>

 <customer>
 <xsl:value-of select=“customer-name”/>
 </customer>

 </xsl:template>
 <xsl:template match=“*”/>

– Example output:
 <customer> Joe </customer>
 <customer> Mary </customer>

XQuery
• XQuery is a general purpose query language for XML data
• Currently being standardized by the World Wide Web

Consortium (W3C)
• Alpha version of XQuery engine available free from

Microsoft
• XQuery is derived from the Quilt query language, which

itself borrows from SQL, XQL and XML-QL
• XQuery uses a

 for … let … where .. result …
syntax
 for  SQL from
 where  SQL where
 result  SQL select
 let allows temporary variables, and has no equivalent in
SQL

FLWR Syntax in XQuery
• For clause uses XPath expressions, and variable in for

clause ranges over values in the set returned by XPath
• Simple FLWR expression in XQuery

– find all accounts with balance > 400, with each result enclosed in
an <account-number> .. </account-number> tag
 for $x in /bank-2/account
 let $acctno := $x/@account-number
 where $x/balance > 400
 return <account-number> $acctno </account-number>

• Let clause not really needed in this query, and selection
can be done In XPath. Query can be written as:

for $x in /bank-2/account[balance>400]
return <account-number> $x/@account-number

 </account-number>

Joins
• Joins are specified in a manner very similar to SQL

for $a in /bank/account,

 $c in /bank/customer,

 $d in /bank/depositor

 where $a/account-number = $d/account-number
 and $c/customer-name = $d/customer-name

 return <cust-acct> $c $a </cust-acct>

• The same query can be expressed with the selections
specified as XPath selections:

 for $a in /bank/account
 $c in /bank/customer

 $d in /bank/depositor[
 account-number = $a/account-number and
 customer-name = $c/customer-name]

 return <cust-acct> $c $a</cust-acct>

XML: Summary
• Becoming the standard for data exchange
• Many details still need to be worked out !!
• Active area of research…

– Especially optimization/implementation

Worst...idea...ever!

