Advanced topics

“Special” databases

Biological data
Geographic data — GIS
Movies

etc.

New types of queries
New ways of indexing data

Storing/retrieval issues (e.g. large sizes, streaming, real-
time, etc.)

Examples

 Biological data
— refinement of “like” queries: find sequences that are “related”

Query: 1 MSVMYKKILYPTDFSETAEIALKHVKAFKTLKAEEVILLHVIDEREIKKRDIFSLLLGVA 60
_ M M++K+L+PTDFSE A A++ + ++ EVILLHVIDE +++ L+ G +
Sbjct: 1 MIFMFRKVLFPTDFSEGAYRAVEVFEKRNKMEVGEVILLHVIDEGTLEE----- LMDGYS 55

« Spatial/geographic data (GIS)
— find all Home Depot stores within 15 miles of Baltimore

— find a point in Maryland that's farther than 15 miles from the
nearest Lowes and is densely populated

— find all cities within lat/lon square: 39.00 N, 40.00 N, 76.00W,
77.00W.

— special/spatial index: R-tree

R-tree

* Binary search tree on Y-coordinate

« Each internal node contains search structure on X-
coordinate for all points with Y coordinates in the

corresponding subtree

° T

OLAP

*On-line Analytical Processing
\Why ?
e Exploratory analysis

* Interactive
 Different queries than typical SQL queries

 Data CUBE

« A summary structure used for this purpose

* E.g. give me total sales by zipcode; now show me total sales by customer employment
category

* Much much faster than using SQL queries against the raw data
 The tables are huge

*Applications:
« Sales reporting, Marketing, Forecasting etc etc

Cross Tabulation of sales by item-name and color

item-name

* The table above is an example of a cross-tabulation
(cross-tab), also referred to as a pivot-table.

— Values for one of the dimension attributes form the row headers
— Values for another dimension attribute form the column headers
— Other dimension attributes are listed on top

— Values in individual cells are (aggregates of) the values of the
dimension attributes that specify the cell.

S22 /8 /5)7 2

Data Cube

® Adata cube is a multidimensional generalization of a cross-tab
® Can have n dimensions; we show 3 below
m Cross-tabs can be used as views on a data cube

S 2/5 /3 /1 ,/11

a7,/ 6 /12 /29

20

14

20

62

35

10

54

10

28

48

53

35

49

27

164

%

34

d
/

skirt dress

item name

shirts

pant

all

42

small

medium

Data federation
E.g. biological data:

— VectorBase — organisms that carry human disease (e.g. mosquito)
— Flybase — fruit flies
— InsectBase???

Federation -combining multiple databases into a single
virtual database

Has many issues:

— schema translation?

— common vocabulary? (e.g. ontologies, semantic web)
— privacy/security

— performance

Non-biological: SkyServer/SkyQuery (Sloan Digital Sky
Survey)

Data warehouses

» Brute-force solution to federation:
— download all databases
— convert them to a common schema
— provide a common interface

* Problems:
— data storage & duplication
— hard to keep up to date
— performance (single point of entry/ failure)
 Examples:
— GenBank (US biological data repository)
— Ensembl (EU biological data repository)

Data Mining

« Searching for patterns in data
— Typically done in data warehouses

*Association Rules:
 When a customer buys X, she also typically buys Y
e Use ?
« Move X and Y together in supermarkets

e A customer buys a lot of shirts
» Send him a catalogue of shirts

« Patterns are not always obvious

» Classic example: It was observed that men tend to buy beer and diapers together
(may be an urban legend)

*Other types of mining
e Classification
* Decision Trees

XML

« Extensible Markup Language

* Derived from SGML (Standard Generalized Markup
Language)
— Similar to HTML, but HTML is not extensible

« Extensible == can add new tags etc

« Emerging as the wire format (data interchange format)

XML

<bank-1>
<customer>

<customer-name> Hayes </customer-name>
<customer-street> Main </customer-street>
<customer-city> Harrison </customer-city>
<account>
<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>
</account>
<account>

</account>
</customer>

</bank-1>

Attributes

 Elements can have attributes

<account acct-type = “checking” >
<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>

 Attributes are specified by name=value pairs inside the starting tag
of an element

* An element may have several attributes, but each attribute name can
only occur once

« <account acct-type = “checking” monthly-fee="5">

Attributes Vs. Subelements

* Distinction between subelement and attribute

— In the context of documents, attributes are part of markup, while subelement
contents are part of the basic document contents

— In the context of data representation, the difference is unclear and may be
confusing

« Same information can be represented in two ways

— <account account-number = “A-101"> </account>
— <account>
<account-number>A-101</account-number> ...
</account>

— Suggestion: use attributes for identifiers of elements, and use subelements for
contents

Namespaces

XML data has to be exchanged between organizations

Same tag name may have different meaning in different
organizations, causing confusion

Specifying a unique string as an element name avoids
confusion

Better solution: use unique-name:element-name

Avoid using long unique names all over document by using
XML Namespaces

<bank Xmins:FB=* ">

<FB:branch>
<FB:branchname>Downtown</FB:branchname>
<FB:branchcity> Brooklyn </FB:branchcity>
</FB:branch>

</bank>

http://www.firstbank.com/
http://www.firstbank.com/

Document Type Definition (DTD)

The type of an XML document can be specified using a
DTD

DTD constraints structure of XML data
— What elements can occur
— What attributes can/must an element have

— What subelements can/must occur inside each element, and how
many times.

DTD does not constrain data types
— All values represented as strings in XML

DTD syntax

— <IELEMENT element (subelements-specification) >
— <IATTLIST element (attributes) >

Also — XML Schema (not covered -read in book & online)

Bank DTD

<IDOCTYPE bank [
<IELEMENT bank ((account | customer | depositor)+)>
<IELEMENT account (account-number branch-name balance)>

<! ELEMENT customer(customer-name customer-street |
customer-city)>

<! ELEMENT depositor (customer-name account-number)>
<! ELEMENT account-number (#PCDATA)>

<! ELEMENT branch-name (#PCDATA)>

<! ELEMENT balance(#PCDATA)>

<I ELEMENT customer-name(#PCDATA)>

<! ELEMENT customer-street(#PCDATA)>

<! ELEMENT customer-city(#PCDATA)>

IDs and IDREFs

* An element can have at most one attribute of type ID

 The ID attribute value of each element in an XML
document must be distinct

— Thus the ID attribute value is an object identifier

« An attribute of type IDREF must contain the ID value of an
element in the same document

Bank DTD with Attributes

« Bank DTD with ID and IDREF attribute types.

<IDOCTYPE bank-2|
<IELEMENT account (branch, balance)>
<IATTLIST account
account-number ID # REQUIRED
owners IDREFS # REQUIRED>
<IELEMENT customer(customer-name, customer-street,
custome-city)>
<IATTLIST customer
customer-id ID # REQUIRED
accounts IDREFS # REQUIRED>

. declarations for branch, balance, customer-name,
customer-street and customer- C|ty

XML data with ID and IDREF attributes

<bank-2>
<account account-number=“A-401" owners="C100 C102”>
<branch-name> Downtown </branch-name>
<balance> 500 </balance>
</account>
<customer customer-id=“C100” accounts=“A-401">
<customer-name>Joe </customer-name>
<customer-street> Monroe </customer-street>
<customer-city> Madison</customer-city>
</customer>
<customer customer-id=“C102” accounts=“A-401 A-402">
<customer-name> Mary </customer-name>
<customer-street> Erin </customer-street>
<customer-city> Newark </customer-city>
</customer>
</bank-2>

Querying and Transforming XML Data

« Standard XML querying/translation languages
— XPath

« Simple language consisting of path expressions
* Forms a basic component of the next two

— XSLT

« Simple language designed for translation from XML to XML and XML to
HTML

— XQuery

« An XML query language with a rich set of features

Tree Model of XML Data

* Query and transformation languages are based on a tree
model of XML data

bank-2

customer [..]

account customer [customer-id="C100", "Q

accounts="A-401
l l balance

Downtown 500

branch-name

XPath

/bank-2/customer/customer-name

<customer-name>Joe</customer-name>
<customer-name>Mary</customer-name>

/bank-2/customer/customer-name/text()

Joe
Mary

/bank-2/account[balance > 400]
— returns account elements with a balance value greater than 400

/bank-2/account[balance > 400]/@account-number
— returns the account numbers of those accounts with balance > 400

Functions in XPath

» /bank-2/account[customer/count() > 2]
— Returns accounts with > 2 customers

« Boolean connectives and and or and function not() can be
used in predicates

« |IDREFs can be referenced using function id()
— E.g. /bank-2/account/id(@owner)

e returns all customers referred to from the owners attribute of account
elements.

More XPath Features

« “/[” can be used to skip multiple levels of nodes

— E.g. /bank-2//customer-name

« finds any customer-name element anywhere under the /bank-2 element,
regardless of the element in which it is contained.

 Wild-cards

XSLT

A stylesheet stores formatting options for a document,
usually separately from document

— E.g. HTML style sheet may specify font colors and sizes for
headings, etc.

The XML Stylesheet Language (XSL) was originally
designed for generating HTML from XML

XSLT is a general-purpose transformation language

— Can translate XML to XML, and XML to HTML

XSLT transformations are expressed using rules called
templates

— Templates combine selection using XPath with construction of
results

XSLT Templates

Example of XSLT template with match and select part

<xsl:template match="/bank-2/customer”>
<xsl:value-of select="customer-name”/>

</xsl:template>

<xsl:template match="*"/>

The match attribute of xsl:template specifies a pattern in
XPath

Elements in the XML document matching the pattern are
processed by the actions within the xsl:template element

— st:va;ue—of selects (outputs) specified values (here, customer-
name

For elements that do not match any template
— Attributes and text contents are output as is
— Templates are recursively applied on subelements

The <xsl:template match="""/> template matches all
elements that do not match any other template

— Used to ensure that their contents do not get output.

Creating XML Output

* Any text or tag in the XSL stylesheet that is not in the xsl
namespace is output as is

« E.g. to wrap results in new XML elements.

<xsl:template match="/bank-2/customer”>
<customer>
<xsl:value-of select="“customer-name”/>
</customer>
</xsl:template>

<xsl:template match="*"/>

— Example output:
<customer> Joe </customer>
<customer> Mary </customer>

XQuery

XQuery is a general purpose query language for XML data

Currently being standardized by the World Wide Web
Consortium (W3C)

Alpha version of XQuery engine available free from
Microsoft

XQuery is derived from the Quilt query language, which
itself borrows from SQL, XQL and XML-QL

XQuery uses a

for ... let ... where .. result ...
syntax

for <& SQL from

where < SQL where

result < SQL select

let allows temporary variables, and has no equivalent in
SQL

FLWR Syntax in XQuery

* For clause uses XPath expressions, and variable in for
clause ranges over values in the set returned by XPath

« Simple FLWR expression in XQuery

— find all accounts with balance > 400, with each result enclosed in
an <account-number> .. </account-number> tag
for $xin /bank-2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> $acctno </account-number>

» Let clause not really needed in this query, and selection
can be done In XPath. Query can be written as:

for $x in /bank-2/account[balance>400]

return <account-number> $x/@account-number
</account-number>

Joins

 Joins are specified in a manner very similar to SQL
for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct> $c $a </cust-acct>

* The same query can be expressed with the selections
specified as XPath selections:

for $a in /bank/account
$c in /bank/customer
$d in /bank/depositor]
account-number = $a/account-number and
customer-name = $c/customer-name]

return <cust-acct> $c $a</cust-acct>

XML: Summary

« Becoming the standard for data exchange
 Many details still need to be worked out !!

* Active area of research...
— Especially optimization/implementation

Worst...idea...ever!

