Chapter 15: Concurrency Control

What is concurrency?

- Multiple 'pieces of code' accessing the same data at the same time
- Key issue in multi-processor systems (i.e. most computers today)
- Key issue for parallel databases
- Main question: how do we ensure data stay consistent without sacrificing (too much) performance?

Lock-Based Protocols

- A lock is a mechanism to control concurrent access to a data item
- Data items can be locked in two modes:
 - 1. **exclusive** (X) mode. Data item can be both read as well as written. X-lock is requested using **lock-X** instruction.
 - 2. **shared** (S) mode. Data item can only be read. S-lock is requested using **lock-S** instruction.
- Lock requests are made to concurrency-control manager.
 Transaction can proceed only after request is granted.

Lock-Based Protocols (Cont.)

Lock-compatibility matrix

	S	Χ
S	true	false
X	false	false

- A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the item by other transactions.
- Any number of transactions can hold shared locks on an item,
 - but if any transaction holds an exclusive on the item no other transaction may hold any lock on the item.
- If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other transactions have been released. The lock is then granted.

Lock-Based Protocols (Cont.)

Example of a transaction performing locking:

```
T<sub>2</sub>: lock-S(A);
read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)
```

- Locking as above is not sufficient to guarantee serializability
 — if A and B get updated in-between the read of A and B,
 the displayed sum would be wrong.
- A locking protocol is a set of rules followed by all transactions while requesting and releasing locks. Locking protocols restrict the set of possible schedules.

Pitfalls of Lock-Based Protocols

Consider the partial schedule

T_3	T_4
lock-x (B)	
read (B)	
B := B - 50	
write (B)	
96 W	lock-s(A)
	read (A)
	lock-s (B)
lock-x(A)	74 to

- Neither T_3 nor T_4 can make progress executing **lock-** $\mathbf{S}(B)$ causes T_4 to wait for T_3 to release its lock on B, while executing **lock-X**(A) causes T_3 to wait for T_4 to release its lock on A.
- Such a situation is called a deadlock.
 - To handle a deadlock one of T_3 or T_4 must be rolled back and its locks released.

Pitfalls of Lock-Based Protocols (Cont.)

- The potential for deadlock exists in most locking protocols.
 Deadlocks are a necessary evil.
- Starvation is also possible if concurrency control manager is badly designed. For example:
 - A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are granted an S-lock on the same item.
 - The same transaction is repeatedly rolled back due to deadlocks.
- Concurrency control manager can be designed to prevent starvation.

The Two-Phase Locking Protocol

- This is a protocol which ensures conflict-serializable schedules.
- Phase 1: Growing Phase
 - transaction may obtain locks
 - transaction may not release locks
- Phase 2: Shrinking Phase
 - transaction may release locks
 - transaction may not obtain locks
- The protocol assures serializability. It can be proven that
 the transactions can be serialized in the order of their lock
 points (i.e., the point where a transaction acquired its final
 lock).

The Two-Phase Locking Protocol (Cont.)

- Two-phase locking does not ensure freedom from deadlocks.
- Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called strict twophase locking. Here a transaction must hold all its exclusive locks till it commits/aborts.
- Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In this protocol transactions can be serialized in the order in which they commit.

The Two-Phase Locking Protocol (Cont.)

- There can be conflict serializable schedules that cannot be obtained if two-phase locking is used.
- However, in the absence of extra information (e.g., ordering of access to data), two-phase locking is needed for conflict serializability in the following sense:

Given a transaction T_i that does not follow two-phase locking, we can find a transaction T_j that uses two-phase locking, and a schedule for T_i and T_j that is not conflict serializable.

Lock Conversions

- Two-phase locking with lock conversions:
 - First Phase:
 - can acquire a lock-S on item
 - can acquire a lock-X on item
 - can convert a lock-S to a lock-X (upgrade)
 - Second Phase:
 - can release a lock-S
 - can release a lock-X
 - can convert a lock-X to a lock-S (downgrade)
- This protocol assures serializability. But still relies on the programmer to insert the various locking instructions.

Automatic Acquisition of Locks

 A transaction T_i issues the standard read/write instruction, without explicit locking calls.

```
The operation read(D) is processed as:
           if T_i has a lock on D
             then
                  read(D)
             else begin
                    if necessary wait until no other
                      transaction has a lock-X on D
                    grant T_i a lock-S on D;
                    read(D)
                  end
```

Automatic Acquisition of Locks (Cont.)

write(D) is processed as: if T_i has a lock-X on D then write(D)else begin if necessary wait until no other trans. has a lock on D, if T_i has a **lock-S** on D then upgrade lock on D to lock-X else grant T_i a **lock-X** on D write(D)end;

All locks are released after commit or abort

Implementation of Locking

- A lock manager can be implemented as a separate process to which transactions send lock and unlock requests.
- The lock manager replies to a lock request by sending a lock grant messages (or a message asking the transaction to roll back, in case of a deadlock).
- The requesting transaction waits until its request is answered.
- The lock manager maintains a data-structure called a lock table to record granted locks and pending requests.
- The lock table is usually implemented as an in-memory hash table indexed on the name of the data item being locked.

Lock Table

- Black rectangles indicate granted locks, white ones indicate waiting requests
- Lock table also records the type of lock granted or requested
- New request is added to the end of the queue of requests for the data item, and granted if it is compatible with all earlier locks
- Unlock requests result in the request being deleted, and later requests are checked to see if they can now be granted
- If transaction aborts, all waiting or granted requests of the transaction are deleted
 - lock manager may keep a list of locks held by each transaction, to implement this efficiently

Graph-Based Protocols

- Graph-based protocols are an alternative to two-phase locking.
- Impose a partial ordering \rightarrow on the set **D** = { d_1 , d_2 ,..., d_h } of all data items.
 - If $d_i \rightarrow d_j$ then any transaction accessing both d_i and d_j must access d_i before accessing d_i .
 - Implies that the set **D** may now be viewed as a directed acyclic graph, called a *database graph*.
- The tree-protocol is a simple kind of graph protocol.

Tree Protocol

- 1. Only exclusive locks are allowed.
- 2. The first lock by T_i may be on any data item. Subsequently, a data Q can be locked by T_i only if the parent of Q is currently locked by T_i .
- 3. Data items may be unlocked at any time.
- 4. A data item that has been locked and unlocked by T_i cannot subsequently be relocked by T_i .

Graph-Based Protocols (Cont.)

- The tree protocol ensures conflict serializability as well as freedom from deadlock.
- Unlocking may occur earlier in the tree-locking protocol than in the two-phase locking protocol.
 - shorter waiting times, and increase in concurrency
 - protocol is deadlock-free, no rollbacks are required
- Drawbacks
 - Protocol does not guarantee recoverability or cascade freedom
 - Need to introduce commit dependencies to ensure recoverability
 - Transactions may have to lock data items that they do not access.
 - increased locking overhead, and additional waiting time
 - potential decrease in concurrency
- Schedules not possible under two-phase locking are possible under tree protocol, and vice versa.

Deadlock Handling

Consider the following two transactions:

 T_1 : write (X) write(Y)

 T_2 : write(Y)

write(X)

Schedule with deadlock

T_1	T_2
lock-X on A write (A)	
	lock-X on B write (B) wait for lock-X on A
wait for lock-X on B	

Deadlock Handling

- System is deadlocked if there is a set of transactions such that every transaction in the set is waiting for another transaction in the set.
- Deadlock prevention protocols ensure that the system will never enter into a deadlock state. Some prevention strategies:
 - Require that each transaction locks all its data items before it begins execution (predeclaration).
 - Impose partial ordering of all data items and require that a transaction can lock data items only in the order specified by the partial order (graph-based protocol).

More Deadlock Prevention Strategies

- Following schemes use transaction timestamps for the sake of deadlock prevention alone.
- wait-die scheme non-preemptive
 - older transaction may wait for younger one to release data item.
 Younger transactions never wait for older ones; they are rolled back instead.
 - a transaction may die several times before acquiring needed data item
- wound-wait scheme preemptive
 - older transaction wounds (forces rollback) of younger transaction instead of waiting for it. Younger transactions may wait for older ones.
 - may be fewer rollbacks than wait-die scheme

Deadlock prevention (Cont.)

 Both in wait-die and in wound-wait schemes, a rolled back transactions is restarted with its original timestamp. Older transactions thus have precedence over newer ones, and starvation is hence avoided.

Timeout-Based Schemes:

- a transaction waits for a lock only for a specified amount of time.
 After that, the wait times out and the transaction is rolled back.
- thus deadlocks are not possible
- simple to implement; but starvation is possible. Also difficult to determine good value of the timeout interval.

Deadlock Detection

- Deadlocks can be described as a wait-for graph, which consists of a pair G = (V,E),
 - V is a set of vertices (all the transactions in the system)
 - *E* is a set of edges; each element is an ordered pair $T_i \rightarrow T_j$.
- If $T_i \rightarrow T_j$ is in E, then there is a directed edge from T_i to T_j , implying that T_i is waiting for T_j to release a data item.
- When T_i requests a data item currently being held by T_j , then the edge T_i T_j is inserted in the wait-for graph. This edge is removed only when T_j is no longer holding a data item needed by T_i .
- The system is in a deadlock state if and only if the wait-for graph has a cycle. Must invoke a deadlock-detection algorithm periodically to look for cycles.

Deadlock Detection (Cont.)

Wait-for graph without a cycle

Wait-for graph with a cycle

Deadlock Recovery

- When deadlock is detected:
 - Some transaction will have to rolled back (made a victim) to break deadlock. Select that transaction as victim that will incur minimum cost.
 - Rollback -- determine how far to roll back transaction.
 - Total rollback: Abort the transaction and then restart it.
 - More effective to roll back transaction only as far as necessary to break deadlock.
 - Starvation happens if same transaction is always chosen as victim.
 Include the number of rollbacks in the cost factor to avoid starvation

Multiple Granularity

- Allow data items to be of various sizes and define a hierarchy of data granularities, where the small granularities are nested within larger ones.
- Can be represented graphically as a tree (but don't confuse with tree-locking protocol)
- When a transaction locks a node in the tree explicitly, it implicitly locks all the node's descendents in the same mode.
- Granularity of locking (level in tree where locking is done):
 - fine granularity (lower in tree): high concurrency, high locking overhead
 - coarse granularity (higher in tree): low locking overhead, low concurrency

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are:

- database
- area
- file
- record

Intention Lock Modes

- In addition to S and X lock modes, there are three additional lock modes with multiple granularity:
 - intention-shared (IS): indicates explicit locking at a lower level of the tree but only with shared locks.
 - intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or shared locks
 - shared and intention-exclusive (SIX): the subtree rooted by that node is locked explicitly in shared mode and explicit locking is being done at a lower level with exclusive-mode locks.
- Intention locks allow a higher level node to be locked in S or X mode without having to check all descendent nodes.

Compatibility Matrix with Intention Lock Modes

The compatibility matrix for all lock modes is:

	IS	IX	S	SIX	X
IS	true	true	true	true	false
IX	true	true	false	false	false
S	true	false	true	false	false
SIX	true	false	false	false	false
X	false	false	false	false	false

Multiple Granularity Locking Scheme

- Transaction T_i can lock a node Q_i , using the following rules:
 - 1. The lock compatibility matrix must be observed.
 - 2. The root of the tree must be locked first, and may be locked in any mode.
 - 3. A node Q can be locked by T_i in S or IS mode only if the parent of Q is currently locked by T_i in either IX or IS mode.
 - 4. A node Q can be locked by T_i in X, SIX, or IX mode only if the parent of Q is currently locked by T_i in either IX or SIX mode.
 - 5. T_i can lock a node only if it has not previously unlocked any node (that is, T_i is two-phase).
 - 6. T_i can unlock a node Q only if none of the children of Q are currently locked by T_i .
- Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-root order.

Timestamp-Based Protocols

- Each transaction is issued a timestamp when it enters the system. If an old transaction T_i has time-stamp $TS(T_i)$, a new transaction T_j is assigned time-stamp $TS(T_j)$ such that $TS(T_i) < TS(T_i)$.
- The protocol manages concurrent execution such that the time-stamps determine the serializability order.
- In order to assure such behavior, the protocol maintains for each data Q two timestamp values:
 - W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.
 - R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) successfully.

Timestamp-Based Protocols (Cont.)

- The timestamp ordering protocol ensures that any conflicting read and write operations are executed in timestamp order.
- Suppose a transaction T_i issues a read(Q):
 - 1. If $TS(T_i) \le W$ -timestamp(Q), then T_i needs to read a value of Q that was already overwritten.
 - ightharpoonup Hence, the **read** operation is rejected, and T_i is rolled back.
 - 1. If $TS(T_i) \ge W$ -timestamp(Q), then the **read** operation is executed, and R-timestamp(Q) is set to **max**(R-timestamp(Q), $TS(T_i)$).

Timestamp-Based Protocols (Cont.)

- Suppose that transaction T_i issues write(Q).
 - 1. If $TS(T_i) < R$ -timestamp(Q), then the value of Q that T_i is producing was needed previously, and the system assumed that that value would never be produced.
 - \rightarrow Hence, the **write** operation is rejected, and T_i is rolled back.
 - 1. If $TS(T_i) < W$ -timestamp(Q), then T_i is attempting to write an obsolete value of Q.
 - ightharpoonup Hence, this **write** operation is rejected, and T_i is rolled back.
 - 1. Otherwise, the **write** operation is executed, and W-timestamp(Q) is set to $TS(T_i)$.

Example Use of the Protocol

A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5

T_1	T_2	T_3	T_4	T_5
read (Y)	read (Y)	write (Y) write (Z)		read (X)
read (X)	read (Z) abort		read (W)	read (Z)
		write (W) abort		write (Y) write (Z)

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph.

- Timestamp protocol ensures freedom from deadlock as no transaction ever waits.
- But the schedule may not be cascade-free, and may not even be recoverable.

Recoverability and Cascade Freedom

- Problem with timestamp-ordering protocol:
 - Suppose T_i aborts, but T_j has read a data item written by T_i
 - Then T_j must abort; if T_j had been allowed to commit earlier, the schedule is not recoverable.
 - Further, any transaction that has read a data item written by T_j must abort
 - This can lead to cascading rollback --- that is, a chain of rollbacks
- Solution 1:
 - A transaction is structured such that its writes are all performed at the end of its processing
 - All writes of a transaction form an atomic action; no transaction may execute while a transaction is being written
 - A transaction that aborts is restarted with a new timestamp
- Solution 2: Limited form of locking: wait for data to be committed before reading it
- Solution 3: Use commit dependencies to ensure recoverability

Thomas' Write Rule

- Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored under certain circumstances.
- When T_i attempts to write data item Q, if TS(T_i) < W-timestamp(Q), then T_i is attempting to write an obsolete value of {Q}.
 - Rather than rolling back T_i as the timestamp ordering protocol would have done, this {write} operation can be ignored.
- Otherwise this protocol is the same as the timestamp ordering protocol.
- Thomas' Write Rule allows greater potential concurrency.
 - Allows some view-serializable schedules that are not conflictserializable.

View Serializability

- Let S and S´ be two schedules with the same set of transactions. S and S´ are view equivalent if the following three conditions are met, for each data item Q,
 - 1. If in schedule S, transaction T_i reads the initial value of Q, then in schedule S´ also transaction T_i must read the initial value of Q.
 - 2. If in schedule S transaction T_i executes read(Q), and that value was produced by transaction T_j (if any), then in schedule S´ also transaction T_i must read the value of Q that was produced by the same write(Q) operation of transaction T_i .
 - The transaction (if any) that performs the final write(Q) operation in schedule S must also perform the final write(Q) operation in schedule S.

As can be seen, view equivalence is also based purely on reads and writes alone.

View Serializability (Cont.)

- A schedule S is view serializable if it is view equivalent to a serial schedule.
- Every conflict serializable schedule is also view serializable.
- Below is a schedule which is view-serializable but not conflict serializable.

T_3	T_4	T_6
read(Q)		
'l - (O)	write(Q)	
write(Q)		
		write(Q)

- What serial schedule is above equivalent to?
- Every view serializable schedule that is not conflict serializable has blind writes.

Validation-Based Protocol

- Execution of transaction T_i is done in three phases.
 - **1. Read and execution phase**: Transaction T_i writes only to temporary local variables
 - **2. Validation phase**: Transaction T_i performs a ``validation test" to determine if local variables can be written without violating serializability.
 - **3. Write phase**: If T_i is validated, the updates are applied to the database; otherwise, T_i is rolled back.
- The three phases of concurrently executing transactions can be interleaved, but each transaction must go through the three phases in that order.
 - Assume for simplicity that the validation and write phase occur together, atomically and serially
 - i.e., only one transaction executes validation/write at a time.
- Also called as optimistic concurrency control since transaction executes fully in the hope that all will go well during validation

Validation-Based Protocol (Cont.)

- Each transaction T_i has 3 timestamps:
 - Start(T_i): the time when T_i started its execution
 - Validation(T_i): the time when T_i entered its validation phase
 - Finish(T_i): the time when T_i finished its write phase
- Serializability order is determined by timestamp given at validation time, to increase concurrency.
 - Thus TS(T_i) is given the value of Validation(T_i).
- This protocol is useful and gives greater degree of concurrency if probability of conflicts is low.
 - because the serializability order is not pre-decided, and
 - relatively few transactions will have to be rolled back.

Validation Test for Transaction T_i

- If for all T_i with TS (T_i) < TS (T_j) either one of the following condition holds:
 - finish (T_i) < start (T_j)
 - $start(T_j) < finish(T_i) < validation(T_j)$ and the set of data items written by T_i does not intersect with the set of data items read by T_i .

then validation succeeds and T_i can be committed. Otherwise, validation fails and T_i is aborted.

- Justification: Either the first condition is satisfied, and there
 is no overlapped execution, or the second condition is
 satisfied and
 - the writes of T_j do not affect reads of T_i since they occur after T_i has finished its reads.
 - the writes of T_i do not affect reads of T_j since T_j does not read any item written by T_i .

Schedule Produced by Validation

Example of schedule produced using validation

T_{25}	T_{26}
read (B)	
	read (B)
	B := B - 50
	read (A)
	A := A + 50
read (A)	
(validate)	
display $(A + B)$	
	⟨validate⟩
	write (B)
	write (A)

Snapshot Isolation

- Motivation: Decision support queries that read large amounts of data have concurrency conflicts with OLTP transactions that update a few rows
 - Poor performance results
- Solution 1: Give logical "snapshot" of database state to read only transactions, read-write transactions use normal locking
 - Multiversion 2-phase locking
 - Works well, but how does system know a transaction is read only?
- Solution 2: Give snapshot of database state to every transaction, updates alone use 2-phase locking to guard against concurrent updates
 - Problem: variety of anomalies such as lost update can result
 - Partial solution: snapshot isolation level (next slide)

Snapshot Isolation

- A transaction T1 executing with Snapshot Isolation
 - takes snapshot of committed data at start
 - always reads/modifies data in its own snapshot
 - updates of concurrent transactions are not visible to T1
 - writes of T1 complete when it commits
 - First-committer-wins rule:
 - Commits only if no other concurrent transaction has already written data that T1 intends to write.

Own updates not visible

Own updates are visible

Not first-committer of X

Serialization error, T2 is rolled back

T1	T2	Т3
W(Y := 1)		
Commit		
	Start	
	$R(X) \rightarrow 0$	
	$R(Y) \rightarrow 1$	
		W(X:=2)
		W(Z:=3)
		Commit
,	$R(Z) \rightarrow 0$	
	$R(Y) \rightarrow 1$	
	W(X:=3)	
	Commit-Req	
	Abort	

Benefits of SI

- Reading is never blocked
 - and also doesn't block other txns activities
- Performance similar to Read Committed
- Avoids the usual anomalies
 - No dirty read
 - No lost update
 - No non-repeatable read
 - Predicate based selects are repeatable (no phantoms)
- Problems with SI
 - SI does not always give serializable executions
 - Serializable: among two concurrent txns, one sees the effects of the other
 - In SI: neither sees the effects of the other
 - Result: Integrity constraints can be violated

Snapshot Isolation

- E.g., of problem with SI
 - T1: x:=y
 - T2: y:= x
 - Initially x = 3 and y = 17
 - Serial execution: x = ??, y = ??
 - if both transactions start at the same time, with snapshot isolation: x = ??, y = ??
- Called skew write
- Skew also occurs with inserts
 - E.g.,:
 - Find max order number among all orders
 - Create a new order with order number = previous max + 1

Insert and Delete Operations

- If two-phase locking is used :
 - A delete operation may be performed only if the transaction deleting the tuple has an exclusive lock on the tuple to be deleted.
 - A transaction that inserts a new tuple into the database is given an X-mode lock on the tuple
- Insertions and deletions can lead to the phantom phenomenon.
 - A transaction that scans a relation
 - (e.g., find sum of balances of all accounts in Perryridge) and a transaction that inserts a tuple in the relation
 - (e.g., insert a new account at Perryridge)
 (conceptually) conflict in spite of not accessing any tuple in common.
 - If only tuple locks are used, non-serializable schedules can result
 - E.g., the scan transaction does not see the new account, but reads some other tuple written by the update transaction

Insert and Delete Operations (Cont.)

- The transaction scanning the relation is reading information that indicates what tuples the relation contains, while a transaction inserting a tuple updates the same information.
- One solution:
 - Associate a data item with the relation, to represent the information about what tuples the relation contains.
 - Transactions scanning the relation acquire a shared lock in the data item.
 - Transactions inserting or deleting a tuple acquire an exclusive lock on the data item. (Note: locks on the data item do not conflict with locks on individual tuples.)
- Above protocol provides very low concurrency for insertions/ deletions.
- Index locking protocols provide higher concurrency while preventing the phantom phenomenon, by requiring locks on certain index buckets.

Weak Levels of Consistency in SQL

- SQL allows non-serializable executions
 - Serializable: is the default
 - Repeatable read: allows only committed records to be read, and repeating a read should return the same value (so read locks should be retained)
 - However, the phantom phenomenon need not be prevented
 - T1 may see some records inserted by T2, but may not see others inserted by T2
 - Read committed: same as degree two consistency, but most systems implement it as cursor-stability
 - Read uncommitted: allows even uncommitted data to be read
- In many database systems, read committed is the default consistency level
 - has to be explicitly changed to serializable when required
 - set isolation level serializable