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What is concurrency?

• Multiple 'pieces of code' accessing the same data at the 
same time

• Key issue in multi-processor systems (i.e. most computers 
today)

• Key issue for parallel databases

• Main question: how do we ensure data stay consistent 
without sacrificing (too much) performance?



Lock-Based ProtocolsLock-Based Protocols
• A lock is a mechanism to control concurrent access to a 

data item
• Data items can be locked in two modes:

    1.  exclusive (X) mode. Data item can be both read as well 
as written. X-lock is requested using  lock-X instruction.

    2.  shared (S) mode. Data item can only be read. S-lock is   
         requested using  lock-S instruction.

• Lock requests are made to concurrency-control manager. 
Transaction can proceed only after request is granted.



Lock-Based Protocols (Cont.)Lock-Based Protocols (Cont.)
• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the 
requested lock is compatible with locks already held on the 
item by other transactions.

• Any number of transactions can hold shared locks on an 
item, 
– but if any transaction holds an exclusive on the item no other 

transaction may hold any lock on the item.
• If a lock cannot be granted, the requesting transaction is 

made to wait till all incompatible locks held by other 
transactions have been released.  The lock is then granted.



Lock-Based Protocols (Cont.)Lock-Based Protocols (Cont.)
• Example of a transaction performing locking:
                       T2: lock-S(A);
                             read (A);
                             unlock(A);
                             lock-S(B);
                             read (B);
                             unlock(B);
                             display(A+B)
• Locking as above is not sufficient to guarantee serializability 

— if A and B get updated in-between the read of A and B, 
the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all 
transactions while requesting and releasing locks. Locking 
protocols restrict the set of possible schedules.



Pitfalls of Lock-Based ProtocolsPitfalls of Lock-Based Protocols
• Consider the partial schedule

• Neither T3 nor T4 can make progress — executing  lock-
S(B) causes T4 to wait for T3 to release its lock on B, while 
executing  lock-X(A) causes T3  to wait for T4 to release its 
lock on A.

• Such a situation is called a deadlock. 
– To handle a deadlock one of T3 or T4 must be rolled back 

and its locks released.



Pitfalls of Lock-Based Protocols (Cont.)Pitfalls of Lock-Based Protocols (Cont.)
• The potential for deadlock exists in most locking protocols. 

Deadlocks are a necessary evil.
• Starvation is also possible if concurrency control manager 

is badly designed. For example:
– A transaction may be waiting for an X-lock on an item, while a 

sequence of other transactions request and are granted an S-lock 
on the same item.  

– The same transaction is repeatedly rolled back due to deadlocks.
• Concurrency control manager can be designed to prevent 

starvation.



The Two-Phase Locking ProtocolThe Two-Phase Locking Protocol
• This is a protocol which ensures conflict-serializable 

schedules.
• Phase 1: Growing Phase

– transaction may obtain locks 
– transaction may not release locks

• Phase 2: Shrinking Phase
– transaction may release locks
– transaction may not obtain locks

• The protocol assures serializability. It can be proven that 

the transactions can be serialized in the order of their lock 

points  (i.e., the point where a transaction acquired its final 

lock). 



The Two-Phase Locking Protocol (Cont.)The Two-Phase Locking Protocol (Cont.)
• Two-phase locking does not ensure freedom from 

deadlocks.

• Cascading roll-back is possible under two-phase locking. To 
avoid this, follow a modified protocol called strict two-
phase locking. Here a transaction must hold all its 
exclusive locks till it commits/aborts.

• Rigorous two-phase locking is even stricter: here all locks 
are held till commit/abort. In this protocol transactions can 
be serialized in the order in which they commit.



The Two-Phase Locking Protocol (Cont.)The Two-Phase Locking Protocol (Cont.)
• There can be conflict serializable schedules that cannot be 

obtained if two-phase locking is used.
  

• However, in the absence of extra information (e.g., ordering 
of  access to data), two-phase locking is needed for conflict 
serializability in the following sense:

     
Given a transaction Ti that does not follow two-phase 
locking, we can find a transaction Tj that uses two-phase 
locking, and a schedule for Ti and Tj that is not conflict 
serializable.



Lock ConversionsLock Conversions
• Two-phase locking with lock conversions:
     –   First Phase:        

– can acquire a lock-S on item
– can acquire a lock-X on item
– can convert a lock-S to a lock-X (upgrade)

     –   Second Phase:
– can release a lock-S
– can release a lock-X
– can convert a lock-X to a lock-S  (downgrade)

• This protocol assures serializability. But still relies on the 
programmer to insert the various locking instructions.



Automatic Acquisition of LocksAutomatic Acquisition of Locks

• A transaction Ti issues the standard read/write instruction,

without explicit locking calls.

• The operation read(D) is processed as:
                      if Ti has a lock on D
                         then
                                read(D) 
                         else begin 
                                   if necessary wait until no other  
                                       transaction has a lock-X on D
                                   grant Ti a  lock-S on D;
                                   read(D)
                                end



Automatic Acquisition of Locks (Cont.)Automatic Acquisition of Locks (Cont.)
• write(D) is processed as:
     if Ti has a  lock-X on D 
        then 
          write(D)
       else begin
            if necessary wait until no other trans. has a lock on D,
            if Ti has a lock-S on D
                 then
                    upgrade lock on D  to lock-X
                else
                    grant Ti a lock-X on D
                write(D)
         end;
• All locks are released after commit or abort



Implementation of LockingImplementation of Locking
• A lock manager can be implemented as a separate 

process to which transactions send lock and unlock 
requests.

• The lock manager replies to a lock request by sending a 
lock grant messages (or a message asking the transaction 
to roll back, in case of  a deadlock).

• The requesting transaction waits until its request is 
answered.

• The lock manager maintains a data-structure called a lock 
table to record granted locks and pending requests.

• The lock table is usually implemented as an in-memory 
hash table indexed on the name of the data item being 
locked.



Lock TableLock Table

• Black rectangles indicate granted 
locks, white ones indicate waiting 
requests

• Lock table also records the type of 
lock granted or requested

• New request is added to the end of 
the queue of requests for the data 
item, and granted if it is compatible 
with all earlier locks

• Unlock requests result in the 
request being deleted, and later 
requests are checked to see if they 
can now be granted

• If transaction aborts, all waiting or 
granted requests of the transaction 
are deleted 
– lock manager may keep a list of 

locks held by each transaction, 
to implement this efficiently



Graph-Based ProtocolsGraph-Based Protocols
• Graph-based protocols are an alternative to two-phase 

locking.
• Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of 

all data items.
– If di → dj  then any transaction accessing both di and dj must 

access di before accessing dj.
– Implies that the set D may now be viewed as a directed acyclic 

graph, called a database graph.
• The tree-protocol is a simple kind of graph protocol. 



Tree ProtocolTree Protocol
1. Only exclusive locks are allowed.
2. The first lock by Ti may be on any data item. Subsequently, 

a data Q can be locked by Ti only if the parent of Q is 
currently locked by Ti.

3. Data items may be unlocked at any time.
4. A data item that has been locked and unlocked by Ti  

cannot subsequently be relocked by Ti .



Graph-Based Protocols (Cont.)Graph-Based Protocols (Cont.)
• The tree protocol ensures conflict serializability as well as 

freedom from deadlock.
• Unlocking may occur earlier in the tree-locking protocol than 

in the two-phase locking protocol.
– shorter waiting times, and increase in concurrency
– protocol is deadlock-free, no rollbacks are required

• Drawbacks
– Protocol does not guarantee recoverability or cascade freedom

• Need to introduce commit dependencies to ensure recoverability 

– Transactions may have to lock data items that they do not access.
• increased locking overhead, and additional waiting time

• potential decrease in concurrency

• Schedules not possible under two-phase locking are 
possible under tree protocol, and vice versa.



Deadlock HandlingDeadlock Handling
• Consider the following two transactions:
             T1:     write (X)               T2:    write(Y)
                      write(Y)                         write(X)
• Schedule with deadlock



Deadlock HandlingDeadlock Handling
• System is deadlocked if there is a set of transactions such 

that every transaction in the set is waiting for another 
transaction in the set.

• Deadlock prevention protocols ensure that the system will 
never enter into a deadlock state. Some prevention 
strategies:
– Require that each transaction locks all its data items before it 

begins execution (predeclaration).
– Impose partial ordering of all data items and require that a 

transaction can lock data items only in the order specified by the 
partial order (graph-based protocol).



More Deadlock Prevention StrategiesMore Deadlock Prevention Strategies
• Following schemes use transaction timestamps for the sake 

of deadlock prevention alone.
• wait-die scheme — non-preemptive

– older transaction may wait for younger one to release data item. 
Younger transactions never wait for older ones; they are rolled 
back instead.

– a transaction may die several times before acquiring needed data 
item

• wound-wait scheme — preemptive
– older transaction wounds (forces rollback) of younger transaction 

instead of waiting for it. Younger transactions may wait for older 
ones.

– may be fewer rollbacks than wait-die scheme



Deadlock prevention (Cont.)Deadlock prevention (Cont.)
• Both in wait-die and in wound-wait schemes, a rolled back 

transactions is restarted with its original timestamp. Older 
transactions thus have precedence over newer ones, and 
starvation is hence avoided.

• Timeout-Based Schemes:
– a transaction waits for a lock only for a specified amount of time. 

After that, the wait times out and the transaction is rolled back.
– thus deadlocks are not possible
– simple to implement; but starvation is possible. Also difficult to 

determine good value of the timeout interval.



Deadlock DetectionDeadlock Detection
• Deadlocks can be described as a wait-for graph, which 

consists of a pair G = (V,E), 
– V is a set of vertices (all the transactions in the system)
– E is a set of edges; each element is an ordered pair Ti →Tj.  

• If Ti →  Tj is in E, then there is a directed edge from Ti to Tj, 
implying that Ti is waiting for Tj to release a data item.

• When Ti requests a data item currently being held by Tj, 
then the edge Ti  Tj is inserted in the wait-for graph. This 
edge is removed only when Tj is no longer holding a data 
item needed by Ti.

• The system is in a deadlock state if and only if the wait-for 
graph has a cycle.  Must invoke a deadlock-detection 
algorithm periodically to look for cycles.



Deadlock Detection (Cont.)Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle



Deadlock RecoveryDeadlock Recovery
• When deadlock is detected:

– Some transaction will have to rolled back (made a victim) to break 
deadlock.  Select that transaction as victim that will incur minimum 
cost.

– Rollback -- determine how far to roll back transaction
• Total rollback: Abort the transaction and then restart it.
• More effective to roll back transaction only as far as necessary to break 

deadlock.

– Starvation happens if same transaction is always chosen as victim. 
Include the number of rollbacks in the cost factor to avoid 
starvation



Multiple GranularityMultiple Granularity
• Allow data items to be of various sizes and define a 

hierarchy of data granularities, where the small granularities 
are nested within larger ones.

• Can be represented graphically as a tree (but don't confuse 
with tree-locking protocol)

• When a transaction locks a node in the tree explicitly, it 
implicitly locks all the node's descendents in the same 
mode.

• Granularity of locking (level in tree where locking is done):
– fine granularity (lower in tree): high concurrency, high locking 

overhead
– coarse granularity  (higher in tree): low locking overhead, low 

concurrency



Example of Granularity HierarchyExample of Granularity Hierarchy

 The levels, starting from the coarsest (top) level 
are:
– database
– area
– file
– record 



Intention Lock ModesIntention Lock Modes
• In addition to S and X lock modes, there are three additional 

lock modes with multiple granularity:
– intention-shared (IS): indicates explicit locking at a lower level of 

the tree but only with shared locks.
– intention-exclusive (IX): indicates explicit locking at a lower level 

with exclusive or shared locks
– shared and intention-exclusive (SIX): the subtree rooted by that 

node is locked explicitly in shared mode and explicit locking is 
being done at a lower level with exclusive-mode locks.

• Intention locks allow a higher level node to be locked in S or 
X mode without having to check all descendent nodes.



Compatibility Matrix with Intention Lock ModesCompatibility Matrix with Intention Lock Modes

• The compatibility matrix for all lock modes is: 



Multiple Granularity Locking SchemeMultiple Granularity Locking Scheme
• Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any 

mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of 

Q is currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the 
parent of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node 
(that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are 
currently locked by Ti.

• Observe that locks are acquired in root-to-leaf order, 
whereas they are released in leaf-to-root order.



Timestamp-Based ProtocolsTimestamp-Based Protocols

• Each transaction is issued a timestamp when it enters the 
system. If an old transaction Ti has time-stamp TS(Ti), a 

new transaction Tj is assigned time-stamp TS(Tj) such that 

TS(Ti) <TS(Tj). 

• The protocol manages concurrent execution such that the 
time-stamps determine the serializability order.

• In order to assure such behavior, the protocol maintains for 
each data Q two timestamp values:

– W-timestamp(Q) is the largest time-stamp of any transaction that 
executed write(Q) successfully.

– R-timestamp(Q) is the largest time-stamp of any transaction that 
executed read(Q) successfully.



Timestamp-Based Protocols (Cont.)Timestamp-Based Protocols (Cont.)
• The timestamp ordering protocol ensures that any 

conflicting read and write operations are executed in 
timestamp order.

• Suppose a transaction Ti issues a read(Q):
1. If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q       

 that was already overwritten.
 Hence, the read operation is rejected, and Ti  is rolled back.

1. If TS(Ti)≥ W-timestamp(Q), then the read operation is executed, 
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).



Timestamp-Based Protocols (Cont.)Timestamp-Based Protocols (Cont.)
• Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is 
producing was needed previously, and the system assumed that 
that value would never be produced. 
 Hence, the write operation is rejected, and Ti is rolled back.

1. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an 
obsolete value of Q. 
 Hence, this write operation is rejected, and Ti is rolled back.

1. Otherwise, the  write operation is executed, and W-timestamp(Q) 
is set to TS(Ti).



Example Use of the ProtocolExample Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5



Correctness of Timestamp-Ordering ProtocolCorrectness of Timestamp-Ordering Protocol
• The timestamp-ordering protocol guarantees serializability 

since all the arcs in the precedence graph are of the form:
    

     Thus, there will be no cycles in the precedence graph.
• Timestamp protocol ensures freedom from deadlock as no 

transaction ever waits.  
• But the schedule may not be cascade-free, and may not 

even be recoverable.



Recoverability and Cascade FreedomRecoverability and Cascade Freedom
• Problem with timestamp-ordering protocol:

– Suppose Ti aborts, but Tj has read a data item written by  Ti

– Then Tj must abort; if Tj had been allowed to commit earlier, the 
schedule is not recoverable.

– Further, any transaction that has read a data item written by Tj 
must abort

– This can lead to cascading rollback --- that is, a chain of rollbacks 

•  Solution 1:
– A transaction is structured such that its writes are all performed at 

the end of its processing
– All writes of a transaction form an atomic action; no transaction 

may execute while a transaction is being written
– A transaction that aborts is restarted with a new timestamp

• Solution 2: Limited form of locking: wait for data to be 
committed before reading it

• Solution 3: Use commit dependencies to ensure recoverability



Snapshot IsolationSnapshot Isolation
• Motivation: Decision support queries that read large 

amounts of data have concurrency conflicts with OLTP 
transactions that update a few rows
– Poor performance results

• Solution 1:  Give logical “snapshot” of database state to 
read only transactions, read-write transactions use normal 
locking
– Multiversion 2-phase locking
– Works well, but how does system know a transaction is read only?

• Solution 2: Give snapshot of database state to every 
transaction, updates alone use 2-phase locking to guard 
against concurrent updates
– Problem: variety of anomalies such as lost update can result
– Partial solution: snapshot isolation level (next slide)



Snapshot IsolationSnapshot Isolation

• A transaction T1 executing with 
Snapshot Isolation
– takes snapshot of committed data 

at start
– always reads/modifies data in its 

own snapshot
– updates of concurrent transactions 

are not visible to T1 
– writes of T1 complete when it 

commits
– First-committer-wins rule:

• Commits only if no other 
concurrent transaction has 
already written data that T1 
intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X)  0

R(Y) 1

W(X:=2)

W(Z:=3)

Commit

R(Z)  0

R(Y)  1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back



Benefits of SIBenefits of SI
• Reading is never blocked 

– and also doesn’t block other txns activities

• Performance similar to Read Committed
• Avoids the usual anomalies

– No dirty read
– No lost update
– No non-repeatable read
– Predicate based selects are repeatable (no phantoms)

• Problems with SI
– SI does not always give serializable executions

• Serializable: among two concurrent txns, one sees the effects of the other

• In SI: neither sees the effects of the other

– Result: Integrity constraints can be violated



Snapshot IsolationSnapshot Isolation
• E.g., of problem with SI

– T1: x:=y
– T2: y:= x
– Initially x = 3 and y = 17

• Serial execution:  x = ??, y = ??
• if both transactions start at the same time, with snapshot isolation:  x = ?? , 

y = ??

• Called skew write
• Skew also occurs with inserts

– E.g.,:
• Find max order number among all orders
• Create a new order with order number = previous max + 1



Insert and Delete OperationsInsert and Delete Operations
• If two-phase locking is used :

– A delete operation may be performed only if the transaction 
deleting the tuple has an exclusive lock on the tuple to be deleted.

– A transaction that inserts a new tuple into the database is given an 
X-mode lock on the tuple

• Insertions and deletions can lead to the phantom 
phenomenon.
– A transaction that scans a relation 

• (e.g., find sum of balances of all accounts in Perryridge) 

and a transaction that inserts a tuple in the relation 

• (e.g., insert a new account at Perryridge)

(conceptually) conflict in spite of not accessing any tuple in common.

– If only tuple locks are used, non-serializable schedules can result
• E.g., the scan transaction does not see the new account, but reads some 

other tuple written by the update transaction



Insert and Delete Operations (Cont.)Insert and Delete Operations (Cont.)
• The transaction scanning the relation is reading information 

that indicates what tuples the relation contains, while a 
transaction inserting a tuple updates the same information.

• One solution: 
– Associate a data item with the relation, to represent the 

information about what tuples the relation contains.
– Transactions scanning the relation acquire a shared lock in the 

data item. 
– Transactions inserting or deleting a tuple acquire an exclusive lock 

on the data item. (Note: locks on the data item do not conflict with 
locks on individual tuples.)

• Above protocol provides very low concurrency for 
insertions/ deletions.

• Index locking protocols provide higher concurrency while 
preventing the phantom phenomenon, by requiring locks 
on certain index buckets. 



Weak Levels of Consistency in SQLWeak Levels of Consistency in SQL
• SQL allows non-serializable executions

– Serializable: is the default
– Repeatable read: allows only committed records to be read, and 

repeating a read should return the same value (so read locks 
should be retained)

• However, the phantom phenomenon need not be prevented
– T1 may see some records inserted by T2, but may not see others inserted by 

T2

– Read committed:  same as degree two consistency, but most 
systems implement it as cursor-stability

– Read uncommitted: allows even uncommitted data to be read

• In many database systems, read committed is the default 
consistency level
– has to be explicitly changed to serializable when required

• set isolation level serializable


