
Chapter 15 : Concurrency Control Chapter 15 : Concurrency Control

What is concurrency?

• Multiple 'pieces of code' accessing the same data at the
same time

• Key issue in multi-processor systems (i.e. most computers
today)

• Key issue for parallel databases

• Main question: how do we ensure data stay consistent
without sacrificing (too much) performance?

Lock-Based ProtocolsLock-Based Protocols
• A lock is a mechanism to control concurrent access to a

data item
• Data items can be locked in two modes:

 1. exclusive (X) mode. Data item can be both read as well
as written. X-lock is requested using lock-X instruction.

 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.

• Lock requests are made to concurrency-control manager.
Transaction can proceed only after request is granted.

Lock-Based Protocols (Cont.)Lock-Based Protocols (Cont.)
• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the
requested lock is compatible with locks already held on the
item by other transactions.

• Any number of transactions can hold shared locks on an
item,
– but if any transaction holds an exclusive on the item no other

transaction may hold any lock on the item.
• If a lock cannot be granted, the requesting transaction is

made to wait till all incompatible locks held by other
transactions have been released. The lock is then granted.

Lock-Based Protocols (Cont.)Lock-Based Protocols (Cont.)
• Example of a transaction performing locking:
 T2: lock-S(A);
 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
• Locking as above is not sufficient to guarantee serializability

— if A and B get updated in-between the read of A and B,
the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all
transactions while requesting and releasing locks. Locking
protocols restrict the set of possible schedules.

Pitfalls of Lock-Based ProtocolsPitfalls of Lock-Based Protocols
• Consider the partial schedule

• Neither T3 nor T4 can make progress — executing lock-
S(B) causes T4 to wait for T3 to release its lock on B, while
executing lock-X(A) causes T3 to wait for T4 to release its
lock on A.

• Such a situation is called a deadlock.
– To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

Pitfalls of Lock-Based Protocols (Cont.)Pitfalls of Lock-Based Protocols (Cont.)
• The potential for deadlock exists in most locking protocols.

Deadlocks are a necessary evil.
• Starvation is also possible if concurrency control manager

is badly designed. For example:
– A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock
on the same item.

– The same transaction is repeatedly rolled back due to deadlocks.
• Concurrency control manager can be designed to prevent

starvation.

The Two-Phase Locking ProtocolThe Two-Phase Locking Protocol
• This is a protocol which ensures conflict-serializable

schedules.
• Phase 1: Growing Phase

– transaction may obtain locks
– transaction may not release locks

• Phase 2: Shrinking Phase
– transaction may release locks
– transaction may not obtain locks

• The protocol assures serializability. It can be proven that

the transactions can be serialized in the order of their lock

points (i.e., the point where a transaction acquired its final

lock).

The Two-Phase Locking Protocol (Cont.)The Two-Phase Locking Protocol (Cont.)
• Two-phase locking does not ensure freedom from

deadlocks.

• Cascading roll-back is possible under two-phase locking. To
avoid this, follow a modified protocol called strict two-
phase locking. Here a transaction must hold all its
exclusive locks till it commits/aborts.

• Rigorous two-phase locking is even stricter: here all locks
are held till commit/abort. In this protocol transactions can
be serialized in the order in which they commit.

The Two-Phase Locking Protocol (Cont.)The Two-Phase Locking Protocol (Cont.)
• There can be conflict serializable schedules that cannot be

obtained if two-phase locking is used.

• However, in the absence of extra information (e.g., ordering
of access to data), two-phase locking is needed for conflict
serializability in the following sense:

Given a transaction Ti that does not follow two-phase
locking, we can find a transaction Tj that uses two-phase
locking, and a schedule for Ti and Tj that is not conflict
serializable.

Lock ConversionsLock Conversions
• Two-phase locking with lock conversions:
 – First Phase:

– can acquire a lock-S on item
– can acquire a lock-X on item
– can convert a lock-S to a lock-X (upgrade)

 – Second Phase:
– can release a lock-S
– can release a lock-X
– can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability. But still relies on the
programmer to insert the various locking instructions.

Automatic Acquisition of LocksAutomatic Acquisition of Locks

• A transaction Ti issues the standard read/write instruction,

without explicit locking calls.

• The operation read(D) is processed as:
 if Ti has a lock on D
 then
 read(D)
 else begin
 if necessary wait until no other
 transaction has a lock-X on D
 grant Ti a lock-S on D;
 read(D)
 end

Automatic Acquisition of Locks (Cont.)Automatic Acquisition of Locks (Cont.)
• write(D) is processed as:
 if Ti has a lock-X on D
 then
 write(D)
 else begin
 if necessary wait until no other trans. has a lock on D,
 if Ti has a lock-S on D
 then
 upgrade lock on D to lock-X
 else
 grant Ti a lock-X on D
 write(D)
 end;
• All locks are released after commit or abort

Implementation of LockingImplementation of Locking
• A lock manager can be implemented as a separate

process to which transactions send lock and unlock
requests.

• The lock manager replies to a lock request by sending a
lock grant messages (or a message asking the transaction
to roll back, in case of a deadlock).

• The requesting transaction waits until its request is
answered.

• The lock manager maintains a data-structure called a lock
table to record granted locks and pending requests.

• The lock table is usually implemented as an in-memory
hash table indexed on the name of the data item being
locked.

Lock TableLock Table

• Black rectangles indicate granted
locks, white ones indicate waiting
requests

• Lock table also records the type of
lock granted or requested

• New request is added to the end of
the queue of requests for the data
item, and granted if it is compatible
with all earlier locks

• Unlock requests result in the
request being deleted, and later
requests are checked to see if they
can now be granted

• If transaction aborts, all waiting or
granted requests of the transaction
are deleted
– lock manager may keep a list of

locks held by each transaction,
to implement this efficiently

Graph-Based ProtocolsGraph-Based Protocols
• Graph-based protocols are an alternative to two-phase

locking.
• Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of

all data items.
– If di → dj then any transaction accessing both di and dj must

access di before accessing dj.
– Implies that the set D may now be viewed as a directed acyclic

graph, called a database graph.
• The tree-protocol is a simple kind of graph protocol.

Tree ProtocolTree Protocol
1. Only exclusive locks are allowed.
2. The first lock by Ti may be on any data item. Subsequently,

a data Q can be locked by Ti only if the parent of Q is
currently locked by Ti.

3. Data items may be unlocked at any time.
4. A data item that has been locked and unlocked by Ti

cannot subsequently be relocked by Ti .

Graph-Based Protocols (Cont.)Graph-Based Protocols (Cont.)
• The tree protocol ensures conflict serializability as well as

freedom from deadlock.
• Unlocking may occur earlier in the tree-locking protocol than

in the two-phase locking protocol.
– shorter waiting times, and increase in concurrency
– protocol is deadlock-free, no rollbacks are required

• Drawbacks
– Protocol does not guarantee recoverability or cascade freedom

• Need to introduce commit dependencies to ensure recoverability

– Transactions may have to lock data items that they do not access.
• increased locking overhead, and additional waiting time

• potential decrease in concurrency

• Schedules not possible under two-phase locking are
possible under tree protocol, and vice versa.

Deadlock HandlingDeadlock Handling
• Consider the following two transactions:
 T1: write (X) T2: write(Y)
 write(Y) write(X)
• Schedule with deadlock

Deadlock HandlingDeadlock Handling
• System is deadlocked if there is a set of transactions such

that every transaction in the set is waiting for another
transaction in the set.

• Deadlock prevention protocols ensure that the system will
never enter into a deadlock state. Some prevention
strategies:
– Require that each transaction locks all its data items before it

begins execution (predeclaration).
– Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

More Deadlock Prevention StrategiesMore Deadlock Prevention Strategies
• Following schemes use transaction timestamps for the sake

of deadlock prevention alone.
• wait-die scheme — non-preemptive

– older transaction may wait for younger one to release data item.
Younger transactions never wait for older ones; they are rolled
back instead.

– a transaction may die several times before acquiring needed data
item

• wound-wait scheme — preemptive
– older transaction wounds (forces rollback) of younger transaction

instead of waiting for it. Younger transactions may wait for older
ones.

– may be fewer rollbacks than wait-die scheme

Deadlock prevention (Cont.)Deadlock prevention (Cont.)
• Both in wait-die and in wound-wait schemes, a rolled back

transactions is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and
starvation is hence avoided.

• Timeout-Based Schemes:
– a transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.
– thus deadlocks are not possible
– simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.

Deadlock DetectionDeadlock Detection
• Deadlocks can be described as a wait-for graph, which

consists of a pair G = (V,E),
– V is a set of vertices (all the transactions in the system)
– E is a set of edges; each element is an ordered pair Ti →Tj.

• If Ti → Tj is in E, then there is a directed edge from Ti to Tj,
implying that Ti is waiting for Tj to release a data item.

• When Ti requests a data item currently being held by Tj,
then the edge Ti Tj is inserted in the wait-for graph. This
edge is removed only when Tj is no longer holding a data
item needed by Ti.

• The system is in a deadlock state if and only if the wait-for
graph has a cycle. Must invoke a deadlock-detection
algorithm periodically to look for cycles.

Deadlock Detection (Cont.)Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

Deadlock RecoveryDeadlock Recovery
• When deadlock is detected:

– Some transaction will have to rolled back (made a victim) to break
deadlock. Select that transaction as victim that will incur minimum
cost.

– Rollback -- determine how far to roll back transaction
• Total rollback: Abort the transaction and then restart it.
• More effective to roll back transaction only as far as necessary to break

deadlock.

– Starvation happens if same transaction is always chosen as victim.
Include the number of rollbacks in the cost factor to avoid
starvation

Multiple GranularityMultiple Granularity
• Allow data items to be of various sizes and define a

hierarchy of data granularities, where the small granularities
are nested within larger ones.

• Can be represented graphically as a tree (but don't confuse
with tree-locking protocol)

• When a transaction locks a node in the tree explicitly, it
implicitly locks all the node's descendents in the same
mode.

• Granularity of locking (level in tree where locking is done):
– fine granularity (lower in tree): high concurrency, high locking

overhead
– coarse granularity (higher in tree): low locking overhead, low

concurrency

Example of Granularity HierarchyExample of Granularity Hierarchy

 The levels, starting from the coarsest (top) level
are:
– database
– area
– file
– record

Intention Lock ModesIntention Lock Modes
• In addition to S and X lock modes, there are three additional

lock modes with multiple granularity:
– intention-shared (IS): indicates explicit locking at a lower level of

the tree but only with shared locks.
– intention-exclusive (IX): indicates explicit locking at a lower level

with exclusive or shared locks
– shared and intention-exclusive (SIX): the subtree rooted by that

node is locked explicitly in shared mode and explicit locking is
being done at a lower level with exclusive-mode locks.

• Intention locks allow a higher level node to be locked in S or
X mode without having to check all descendent nodes.

Compatibility Matrix with Intention Lock ModesCompatibility Matrix with Intention Lock Modes

• The compatibility matrix for all lock modes is:

Multiple Granularity Locking SchemeMultiple Granularity Locking Scheme
• Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any

mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of

Q is currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the
parent of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node
(that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are
currently locked by Ti.

• Observe that locks are acquired in root-to-leaf order,
whereas they are released in leaf-to-root order.

Timestamp-Based ProtocolsTimestamp-Based Protocols

• Each transaction is issued a timestamp when it enters the
system. If an old transaction Ti has time-stamp TS(Ti), a

new transaction Tj is assigned time-stamp TS(Tj) such that

TS(Ti) <TS(Tj).

• The protocol manages concurrent execution such that the
time-stamps determine the serializability order.

• In order to assure such behavior, the protocol maintains for
each data Q two timestamp values:

– W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.

– R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

Timestamp-Based Protocols (Cont.)Timestamp-Based Protocols (Cont.)
• The timestamp ordering protocol ensures that any

conflicting read and write operations are executed in
timestamp order.

• Suppose a transaction Ti issues a read(Q):
1. If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q

 that was already overwritten.
 Hence, the read operation is rejected, and Ti is rolled back.

1. If TS(Ti)≥ W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

Timestamp-Based Protocols (Cont.)Timestamp-Based Protocols (Cont.)
• Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is
producing was needed previously, and the system assumed that
that value would never be produced.
 Hence, the write operation is rejected, and Ti is rolled back.

1. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
obsolete value of Q.
 Hence, this write operation is rejected, and Ti is rolled back.

1. Otherwise, the write operation is executed, and W-timestamp(Q)
is set to TS(Ti).

Example Use of the ProtocolExample Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

Correctness of Timestamp-Ordering ProtocolCorrectness of Timestamp-Ordering Protocol
• The timestamp-ordering protocol guarantees serializability

since all the arcs in the precedence graph are of the form:

 Thus, there will be no cycles in the precedence graph.
• Timestamp protocol ensures freedom from deadlock as no

transaction ever waits.
• But the schedule may not be cascade-free, and may not

even be recoverable.

Recoverability and Cascade FreedomRecoverability and Cascade Freedom
• Problem with timestamp-ordering protocol:

– Suppose Ti aborts, but Tj has read a data item written by Ti

– Then Tj must abort; if Tj had been allowed to commit earlier, the
schedule is not recoverable.

– Further, any transaction that has read a data item written by Tj
must abort

– This can lead to cascading rollback --- that is, a chain of rollbacks

• Solution 1:
– A transaction is structured such that its writes are all performed at

the end of its processing
– All writes of a transaction form an atomic action; no transaction

may execute while a transaction is being written
– A transaction that aborts is restarted with a new timestamp

• Solution 2: Limited form of locking: wait for data to be
committed before reading it

• Solution 3: Use commit dependencies to ensure recoverability

Snapshot IsolationSnapshot Isolation
• Motivation: Decision support queries that read large

amounts of data have concurrency conflicts with OLTP
transactions that update a few rows
– Poor performance results

• Solution 1: Give logical “snapshot” of database state to
read only transactions, read-write transactions use normal
locking
– Multiversion 2-phase locking
– Works well, but how does system know a transaction is read only?

• Solution 2: Give snapshot of database state to every
transaction, updates alone use 2-phase locking to guard
against concurrent updates
– Problem: variety of anomalies such as lost update can result
– Partial solution: snapshot isolation level (next slide)

Snapshot IsolationSnapshot Isolation

• A transaction T1 executing with
Snapshot Isolation
– takes snapshot of committed data

at start
– always reads/modifies data in its

own snapshot
– updates of concurrent transactions

are not visible to T1
– writes of T1 complete when it

commits
– First-committer-wins rule:

• Commits only if no other
concurrent transaction has
already written data that T1
intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X) 0

R(Y) 1

W(X:=2)

W(Z:=3)

Commit

R(Z) 0

R(Y) 1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back

Benefits of SIBenefits of SI
• Reading is never blocked

– and also doesn’t block other txns activities

• Performance similar to Read Committed
• Avoids the usual anomalies

– No dirty read
– No lost update
– No non-repeatable read
– Predicate based selects are repeatable (no phantoms)

• Problems with SI
– SI does not always give serializable executions

• Serializable: among two concurrent txns, one sees the effects of the other

• In SI: neither sees the effects of the other

– Result: Integrity constraints can be violated

Snapshot IsolationSnapshot Isolation
• E.g., of problem with SI

– T1: x:=y
– T2: y:= x
– Initially x = 3 and y = 17

• Serial execution: x = ??, y = ??
• if both transactions start at the same time, with snapshot isolation: x = ?? ,

y = ??

• Called skew write
• Skew also occurs with inserts

– E.g.,:
• Find max order number among all orders
• Create a new order with order number = previous max + 1

Insert and Delete OperationsInsert and Delete Operations
• If two-phase locking is used :

– A delete operation may be performed only if the transaction
deleting the tuple has an exclusive lock on the tuple to be deleted.

– A transaction that inserts a new tuple into the database is given an
X-mode lock on the tuple

• Insertions and deletions can lead to the phantom
phenomenon.
– A transaction that scans a relation

• (e.g., find sum of balances of all accounts in Perryridge)

and a transaction that inserts a tuple in the relation

• (e.g., insert a new account at Perryridge)

(conceptually) conflict in spite of not accessing any tuple in common.

– If only tuple locks are used, non-serializable schedules can result
• E.g., the scan transaction does not see the new account, but reads some

other tuple written by the update transaction

Insert and Delete Operations (Cont.)Insert and Delete Operations (Cont.)
• The transaction scanning the relation is reading information

that indicates what tuples the relation contains, while a
transaction inserting a tuple updates the same information.

• One solution:
– Associate a data item with the relation, to represent the

information about what tuples the relation contains.
– Transactions scanning the relation acquire a shared lock in the

data item.
– Transactions inserting or deleting a tuple acquire an exclusive lock

on the data item. (Note: locks on the data item do not conflict with
locks on individual tuples.)

• Above protocol provides very low concurrency for
insertions/ deletions.

• Index locking protocols provide higher concurrency while
preventing the phantom phenomenon, by requiring locks
on certain index buckets.

Weak Levels of Consistency in SQLWeak Levels of Consistency in SQL
• SQL allows non-serializable executions

– Serializable: is the default
– Repeatable read: allows only committed records to be read, and

repeating a read should return the same value (so read locks
should be retained)

• However, the phantom phenomenon need not be prevented
– T1 may see some records inserted by T2, but may not see others inserted by

T2

– Read committed: same as degree two consistency, but most
systems implement it as cursor-stability

– Read uncommitted: allows even uncommitted data to be read

• In many database systems, read committed is the default
consistency level
– has to be explicitly changed to serializable when required

• set isolation level serializable

