Why study databases?

\$ 200 000 000 + \$ 13 000 000 / year

\$ 200 000 000

Both owned by Larry Ellison, CEO of Oracle It pays to know databases!

Why go through all this?

- Database administrators are paid well
- Databases are everywhere (i.e. lots of job opportunities)
 - E.g. Google
 - at the doctor's office
 - payroll systems
 - on Wall Street
 - government (e.g. CIA)
 - scientific data
- Database research offers many exciting opportunities
 - Internet technologies
 - handling huge amounts of data
 - etc.

Databases in the wild

- Database assembles US warnings of Saddam threat Reuters (1/23/2008)
 - can search by keywords
 - summarizes statistics
 - assembled from a number of sources
 - manual curation/entry
- Google
 - database of searches (google trends)
 - database of emails (gmail)
 - database of publications (google scholar)
 - **—** ...
 - privacy issues
- Bio-medical databases
 - doctor's office, lab providers, hospitals, research institutes
 - insurance companies
 - who/how/when/how much information shared?

Data overload

- Commerce/e-commerce (Walmart > 500 TB of product data, 1 billion records added / day, also customer preferences, etc.)
- Library of congress (> 20TB)
- Scientific data
 - Sloan Digital Sky Survey (15 TB)
 - Biological Data (> 1 TB generated / day)
 - Climate data
- Surveillance data (e.g. sensor networks, traffic cameras)

Complex questions

- How do you get to Hershey Park from College Park given traffic, tolls, etc.
- Structure of terrorist networks: who will replace Osama Bin Laden if he is captured?
- Biological data: how do genes work together to create a living organism?

Efficiency

- Given a bank with millions of ATMs how quickly can each transaction be made?
- Given a large biological dataset (e.g. 6TB Human Microbiome Data) how quickly can you find all the genes and organisms?

Robustness and Concurrency

- What do you do if systems crash?
- How do you manage many (millions) of simultaneous queries (e.g. google)?
- How do you build a database on thousands of computers?
- How can you ensure privacy and security?

Database Management Systems

- Provide a means to address the questions we just raised
- Primarily deal with structured data (e.g. data that can be stored in spreadsheets)
- More advanced versions deal with graphs, plain text (e.g. searching/processing blogs), etc.
- We'll primarily focus on the former

Account			
bname	acct_no	balance	
Downtown Mianus Perry R.H	A-101 A-215 A-102 A-305	500 700 400 350	

Customer		
cname	cstreet	ccity
Jones Smith Hayes Curry Lindsay	Main North Main North Park	Harrison Rye Harrison Rye Pittsfield

What we will cover...

- representing information
 - data modeling
- languages and systems for querying data
 - complex queries & query semantics
 - over massive data sets
- concurrency control for data manipulation
 - controlling concurrent access
 - ensuring transactional semantics
- reliable data storage
 - maintain data semantics even if you pull the plug