

CMSC 424: Database Design
Introduction to databases

Relational Model
SQL

Why databases?
• An example from my research: Clinical data from diarrhea

study
• Need to store data about:

– Individual patients: age, clinical parameters, disease state, etc.
– Laboratory results: microbiology, virology, parasitology, etc.
– DNA samples: concentration, location on plate, etc.
– Results of computational analysis: files, number of sequences in

files, etc.

• Do you really need a database?

Flat-file solution
• Samples spreadsheet (Samples.csv)

– sample identifier
– country
– case status

• Laboratory spreadsheet (Lab_out.csv)
– clinical parameters
– drugs administered
– results of laboratory tests

• Computational analysis spreadsheet (454.csv)
– DNA information
– File name
– # of sequences detected

Flat-file solution
• Why not all the data in one file?

– file can get very big
– different people may want to update the information separately

(doctor, lab technician, bioinformatician)

• How do we match the files to each other?
– all files need to refer to the same set of IDs (in our case "Sample

ID")

• Will this work well enough?
– Perhaps...depending on how you use it

Flat-file solution: querying
• Find the identifiers for patients from Gambia that have

Giardia
– fairly easy: all data in one file

grep 'Gambia .* Giardia' samples.csv | cut -f 1
– Note: I need to know exactly how the file is organized

• Find the age of all sick children from Gambia
– a bit harder: information is in two different files

join -1 1 -2 1 Lab_Out.csv samples.csv | grep 'Gambia' | cut -f 7
– Note: again I need to know exactly how the files are organized
– Note: I also need to keep the files sorted by the identifier, otherwise

the 'join' command doesn't work

Flat-file solution: querying
• Find the average number of sequences found in children

under 2 that have cholera
– Huh?
– Now I need to join information from three files
– and do some math
– perhaps I'll have to write some code

• Note: there's a lot of stuff you can do with just simple
command-line operations in Unix

Flat-file solution: updating
• How do I add information about a new patient?

– I need to update all three files
– Make sure to not have any typos

• How about if I want to add more fields to one or more files
(e.g. a new laboratory test)
– I need to make sure I don't mess up the order of the columns in any

of the files (otherwise my scripts won't work)

• How do I ensure certain constraints are met?
– some fields should never be empty (e.g. identifier)
– other fields must haver reasonable values (e.g. 97 < body

temperature < 110)
– records are sorted by their identifier (so that join command works)
– age is a numeric value

The better solution
• Database management systems handle all the challenges

we just encountered
• They also handle a lot more

– Atomicity: certain groups of operations must operate as one –
either they all succeed, or the whole block fails

For example: if I add a new patient to the three files, I want the
record to be added to all, or none, even if the system crashes as
I'm adding the information

– Durability: once an operation succeeds, the state of the database is
appropriately changed

For example: I add a new patient to the three files, tell the user that
I did, then the system crashes. When the system comes up it better
have the new patient in the database.

DBMS...cont
• Databases also handle:

– Concurrency: adequately handle multiple simultaneous requests

Example: A doctor and a lab technician want to simultaneously add
the same patient to the database.

• The doctor looks in the sample spreadsheet and does not find the patient
• The doctor generates a new identifier (1001)
• The lab technician looks in the sampe spreadsheet and does not find the

patient
• The lab technician generates a new identifier (1002)
• The doctor records the patient's information in the samples spreadsheet

under identifier 1001
• The lab technician records the patient's information in the Lab_out

spreadsheet under identifier 1002

DBMS...cont
• Databases also handle

– Security: only authorized users can see the data
– Privacy: a user may only see the data that they need to access

(e.g. lab technician cannot see clinical parameters)

• Most of these features are difficult or impossible to
implement in a flat-file system

DBMS at a Glance
● Data Modeling

How the data are represented

● Data Retrieval
How the data are accessed/queried

● Data Storage
How the data are organized on disk

● Data Integrity
How concurrency and crashes are handled

 12

naïve users

Architecture of a DBMS

System Components
 & Interfaces

DML: Data Manipulation Language
DDL: Data Definition Language
DBA: Data Base Administrator

DB Design

Application (object) code database
manager

query
processorDML precompiler DDL compiler

Applic. programs

User interfaces/Forms Query

programmers DB experts
DBA

data files

data dictionary

file
manager

D
B
M
S

 13

Relational databases
• Organize the data in a series of "tables" or "relations"
• Conceptually same as the spreadsheets we used in our

early example
• The column headers are called "attributes"
• The elements in the tables are called "rows" or "tuples"

Example of a Relation

attributes
(or columns)

tuples
(or rows)

More about relational model
• Tuples assumed to be unordered
• Attributes not necessarily unique (many rows can have

same value in a column)
• Key – an attribute, or combination of attributes, that can be

used to select a unique tuple

e.g. the Sample ID field in my example
or Street name + Street number + Apartment number for an
address

• Foreign key constraint/relationship – link between the keys
of two or more tables

Relation Schema and Instance
• A1, A2, …, An are attributes

• R = (A1, A2, …, An) is a relation schema

Example:

 instructor = (ID, name, dept_name, salary)

• Formally, given sets D1, D2, …. Dn a relation r is a subset

of

 D1 x D2 x … x Dn

Thus, a relation is a set of n-tuples (a1, a2, …, an) where

each ai ∈ Di

Schema Diagram for University Database

Basic Query Structure
• A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

– Ai represents an attribute

– Ri represents a relation

– P is a predicate.

• The result of an SQL query is a relation.

The select Clause
• The select clause list the attributes desired in the result of

a query
– corresponds to the projection operation of the relational algebra

• Example: find the names of all instructors:
select name
from instructor

• NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)
– E.g., Name ≡ NAME ≡ name

– Some people use upper case wherever we use bold font.

The select Clause (Cont.)
• SQL allows duplicates in relations as well as in query

results.

• To force the elimination of duplicates, insert the keyword
distinct after select.

• Find the names of all departments with instructor, and
remove duplicates

select distinct dept_name
from instructor

• The keyword all specifies that duplicates not be removed.

select all dept_name
from instructor

The select Clause (Cont.)
• An asterisk in the select clause denotes “all attributes”

select *
from instructor

• The select clause can contain arithmetic expressions
involving the operation, +, –, ∗, and /, and operating on
constants or attributes of tuples.

• The query:

 select ID, name, salary/12
 from instructor

would return a relation that is the same as the instructor
relation, except that the value of the attribute salary is
divided by 12.

The where Clause
• The where clause specifies conditions that the result must

satisfy
– Corresponds to the selection predicate of the relational algebra.

• To find all instructors in Comp. Sci. dept with salary >
80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary >

80000

• Comparison results can be combined using the logical
connectives and, or, and not.

• Comparisons can be applied to results of arithmetic
expressions.

The from Clause

• The from clause lists the relations involved in the
query
– Corresponds to the Cartesian product operation of the

relational algebra.

• Find the Cartesian product instructor X teaches

select ∗
from instructor, teaches

– generates every possible instructor – teaches pair, with all
attributes from both relations.

• Cartesian product not very useful directly, but useful
combined with where-clause condition (selection
operation in relational algebra).

Cartesian Product
instructor teaches

 25

Getting started
• Oracle (available on grace systems)

$ sqlplus

• MySQL (free software)
$ mysql

• From here on it's a command line interface

 26

Getting started...cont
• Select database

use database ;

• Note: commands end with ;

 27

Database resources
• http://www.dbis.informatik.uni-goettingen.de/Mondial/
• You can use MySql (easy to do at home)
• But... must ensure that code runs in Oracle on grace

• Some useful software:
– MySQL Workbench – http://wb.mysql.com

Database management tool, also allows you to build schemas
– Xampp - http://sourceforge.net/projects/xampp/

Includes webserver, mysql, php, etc. particularly useful for the
project

– PHPMyAdmin – http://www.phpmyadmin.net/home_page/index.php
Web-based administration of MySQL database

