
Chapter 18: Parallel DatabasesChapter 18: Parallel Databases
Chapter 19: Distributed DatabasesChapter 19: Distributed Databases

ETC.ETC.

IntroductionIntroduction
• Parallel machines are becoming quite common and

affordable
– Prices of microprocessors, memory and disks have dropped

sharply
– Recent desktop computers feature multiple processors and this

trend is projected to accelerate

• Databases are growing increasingly large
– large volumes of transaction data are collected and stored for later

analysis.
– multimedia objects like images are increasingly stored in

databases

• Large-scale parallel database systems increasingly used
for:
– storing large volumes of data
– processing time-consuming decision-support queries
– providing high throughput for transaction processing

Multiple levels of parallelism

parallel I/O

query 1

proc 1 proc 2 proc 3 proc 4 proc 5 proc 6

query 1 query 1 query 1

Cache coherence?

• Note – parallel queries already discussed under
concurrency control/locking

processor 1 processor 2 processor 3

buffer1 buffer2 buffer3

Parallel Sort Parallel Sort
Parallel External Sort-Merge
• Assume the relation has already been partitioned among

disks D0, ..., Dn-1 (in whatever manner).
• Each processor Pi locally sorts the data on disk Di.
• The sorted runs on each processor are then merged to get

the final sorted output.
• Parallelize the merging of sorted runs as follows:

– The sorted partitions at each processor Pi are range-partitioned
across the processors P0, ..., Pm-1.

– Each processor Pi performs a merge on the streams as they are
received, to get a single sorted run.

– The sorted runs on processors P0,..., Pm-1 are concatenated to get
the final result.

NOTE: Actually hard to do!

Parallel JoinParallel Join
• The join operation requires pairs of tuples to be tested to

see if they satisfy the join condition, and if they do, the pair
is added to the join output.

• Parallel join algorithms attempt to split the pairs to be tested
over several processors. Each processor then computes
part of the join locally.

• In a final step, the results from each processor can be
collected together to produce the final result.

Query OptimizationQuery Optimization
• Query optimization in parallel databases is significantly

more complex than query optimization in sequential
databases.

• Cost models are more complicated, since we must take into
account partitioning costs and issues such as skew and
resource contention.

• When scheduling execution tree in parallel system, must
decide:
– How to parallelize each operation and how many processors to

use for it.

• Determining the amount of resources to allocate for each
operation is a problem.
– E.g., allocating more processors than optimal can result in high

communication overhead.

• Long pipelines should be avoided as the final operation may
wait a lot for inputs, while holding precious resources

Design of Parallel SystemsDesign of Parallel Systems
Some issues in the design of parallel systems:
• Parallel loading of data from external sources is needed in

order to handle large volumes of incoming data.
• Resilience to failure of some processors or disks.

– Probability of some disk or processor failing is higher in a parallel
system.

– Operation (perhaps with degraded performance) should be
possible in spite of failure.

– Redundancy achieved by storing extra copy of every data item at
another processor.

Design of Parallel Systems (Cont.)Design of Parallel Systems (Cont.)
• On-line reorganization of data and schema changes must

be supported.
– For example, index construction on terabyte databases can take

hours or days even on a parallel system.
• Need to allow other processing (insertions/deletions/updates) to be

performed on relation even as index is being constructed.

– Basic idea: index construction tracks changes and “catches up” on
changes at the end.

• Also need support for on-line repartitioning and schema
changes (executed concurrently with other processing).

Chapter 19: Distributed DatabasesChapter 19: Distributed Databases

Distributed Database SystemDistributed Database System
• A distributed database system consists of loosely coupled

sites that share no physical component
• Database systems that run on each site are independent of

each other
• Transactions may access data at one or more sites

Homogeneous Distributed DatabasesHomogeneous Distributed Databases
• In a homogeneous distributed database

– All sites have identical software
– Are aware of each other and agree to cooperate in processing

user requests.
– Each site surrenders part of its autonomy in terms of right to

change schemas or software
– Appears to user as a single system

• In a heterogeneous distributed database
– Different sites may use different schemas and software

• Difference in schema is a major problem for query processing
• Difference in software is a major problem for transaction processing

– Sites may not be aware of each other and may provide only
limited facilities for cooperation in transaction processing

Distributed Data StorageDistributed Data Storage
• Assume relational data model
• Replication

– System maintains multiple copies of data, stored in different sites,
for faster retrieval and fault tolerance.

• Fragmentation
– Relation is partitioned into several fragments stored in distinct sites

• Replication and fragmentation can be combined
– Relation is partitioned into several fragments: system maintains

several identical replicas of each such fragment.

Data FragmentationData Fragmentation
• Division of relation r into fragments r1, r2, …, rn which

contain sufficient information to reconstruct relation r.
• Horizontal fragmentation: each tuple of r is assigned to

one or more fragments
• Vertical fragmentation: the schema for relation r is split

into several smaller schemas
– All schemas must contain a common candidate key (or superkey)

to ensure lossless join property.
– A special attribute, the tuple-id attribute may be added to each

schema to serve as a candidate key.

Naming of Data Items - CriteriaNaming of Data Items - Criteria
1. Every data item must have a system-wide unique name.
2. It should be possible to find the location of data items

efficiently.
3. It should be possible to change the location of data items

transparently.
4. Each site should be able to create new data items

autonomously.

Distributed TransactionsDistributed Transactions
• Transaction may access data at several sites.
• Each site has a local transaction manager responsible for:

– Maintaining a log for recovery purposes
– Participating in coordinating the concurrent execution of the

transactions executing at that site.
• Each site has a transaction coordinator, which is

responsible for:
– Starting the execution of transactions that originate at the site.
– Distributing subtransactions at appropriate sites for execution.
– Coordinating the termination of each transaction that originates at

the site, which may result in the transaction being committed at all
sites or aborted at all sites.

Commit ProtocolsCommit Protocols
• Commit protocols are used to ensure atomicity across sites

– a transaction which executes at multiple sites must either be
committed at all the sites, or aborted at all the sites.

– not acceptable to have a transaction committed at one site and
aborted at another

• The two-phase commit (2PC) protocol is widely used

Two Phase Commit Protocol (2PC)Two Phase Commit Protocol (2PC)
• Assumes fail-stop model – failed sites simply stop working,

and do not cause any other harm, such as sending incorrect
messages to other sites.

• Execution of the protocol is initiated by the coordinator after
the last step of the transaction has been reached.

• The protocol involves all the local sites at which the
transaction executed

• Let T be a transaction initiated at site Si, and let the
transaction coordinator at Si be Ci

Phase 1: Obtaining a DecisionPhase 1: Obtaining a Decision
• Coordinator asks all participants to prepare to commit

transaction Ti.
– Ci adds the records <prepare T> to the log and forces log to

stable storage
– sends prepare T messages to all sites at which T executed

• Upon receiving message, transaction manager at site
determines if it can commit the transaction
– if not, add a record <no T> to the log and send abort T message

to Ci

● if the transaction can be committed, then:
● add the record <ready T> to the log
● force all records for T to stable storage
● send ready T message to Ci

Phase 2: Recording the DecisionPhase 2: Recording the Decision
• T can be committed if Ci received a ready T message from

all the participating sites: otherwise T must be aborted.
• Coordinator adds a decision record, <commit T> or <abort

T>, to the log and forces record onto stable storage. Once
the record stable storage it is irrevocable (even if failures
occur)

• Coordinator sends a message to each participant informing
it of the decision (commit or abort)

• Participants take appropriate action locally.

Distributed Query ProcessingDistributed Query Processing
• For centralized systems, the primary criterion for measuring

the cost of a particular strategy is the number of disk
accesses.

• In a distributed system, other issues must be taken into
account:
– The cost of a data transmission over the network.
– The potential gain in performance from having several sites

process parts of the query in parallel.

Heterogeneous Distributed DatabasesHeterogeneous Distributed Databases
• Many database applications require data from a variety of

preexisting databases located in a heterogeneous collection
of hardware and software platforms

• Data models may differ (hierarchical, relational, etc.)
• Transaction commit protocols may be incompatible
• Concurrency control may be based on different techniques

(locking, timestamping, etc.)
• System-level details almost certainly are totally

incompatible.
• A multidatabase system is a software layer on top of

existing database systems, which is designed to manipulate
information in heterogeneous databases
– Creates an illusion of logical database integration without any

physical database integration

AdvantagesAdvantages
• Preservation of investment in existing

– hardware
– system software
– Applications

• Local autonomy and administrative control
• Allows use of special-purpose DBMSs
• Step towards a unified homogeneous DBMS

– Full integration into a homogeneous DBMS faces
• Technical difficulties and cost of conversion
• Organizational/political difficulties

– Organizations do not want to give up control on their data
– Local databases wish to retain a great deal of autonomy

Unified View of DataUnified View of Data
• Agreement on a common data model

– Typically the relational model
• Agreement on a common conceptual schema

– Different names for same relation/attribute
– Same relation/attribute name means different things

• Agreement on a single representation of shared data
– E.g., data types, precision,
– Character sets

• ASCII vs EBCDIC
• Sort order variations

• Agreement on units of measure
• Variations in names

– E.g., Köln vs Cologne, Mumbai vs Bombay

Query ProcessingQuery Processing
• Several issues in query processing in a heterogeneous

database
• Schema translation

– Write a wrapper for each data source to translate data to a global
schema

– Wrappers must also translate updates on global schema to
updates on local schema

• Limited query capabilities
– Some data sources allow only restricted forms of selections

• E.g., web forms, flat file data sources

– Queries have to be broken up and processed partly at the source
and partly at a different site

• Removal of duplicate information when sites have
overlapping information
– Decide which sites to execute query

• Global query optimization

Directory Access ProtocolsDirectory Access Protocols
• Most commonly used directory access protocol:

– LDAP (Lightweight Directory Access Protocol)
– Simplified from earlier X.500 protocol

• Question: Why not use database protocols like
ODBC/JDBC?

• Answer:
– Simplified protocols for a limited type of data access, evolved

parallel to ODBC/JDBC
– Provide a nice hierarchical naming mechanism similar to file

system directories
• Data can be partitioned amongst multiple servers for different parts of the

hierarchy, yet give a single view to user
– E.g., different servers for Bell Labs Murray Hill and Bell Labs Bangalore

– Directories may use databases as storage mechanism

Real examples

• Vertica
• TeraData
• BigTable
• (aside on MapReduce)

http://portal.acm.org/citation.cfm?id=129894 – De Witt, Gray.
CACM 1992
http://portal.acm.org/citation.cfm?id=1629197 - Stonebreaker
et al. CACM 2010
http://portal.acm.org/citation.cfm?id=1629198 – Dean and
Gemwhat. CACM 2010

