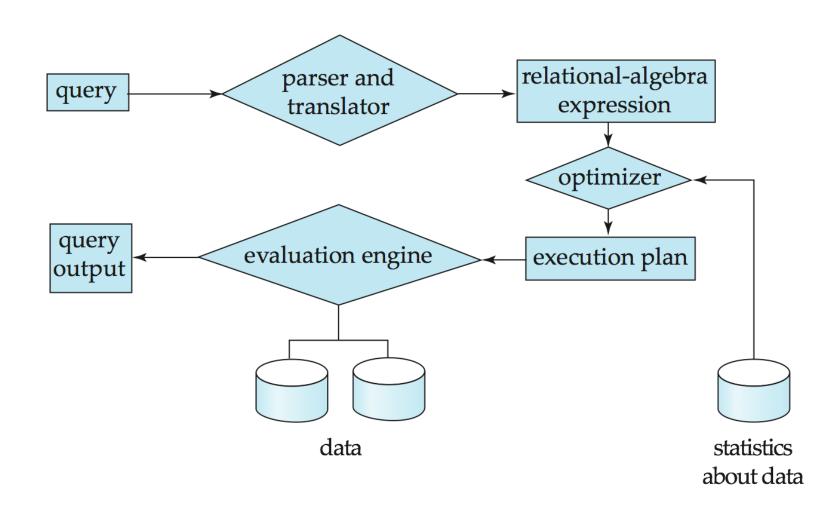
Chapter 12: Query Processing

Basic Steps in Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation



Basic Steps in Query Processing (Cont.)

- Parsing and translation
 - translate the query into its internal form. This is then translated into relational algebra.
 - Parser checks syntax, verifies relations
- Evaluation
 - The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query.
- Optimizer
 - there are many ways to execute a query
 - optimizer picks the one with the lowest cost

SQL execution plan information

- Oracle
 - EXPLAIN PLAN FOR SELECT ...
 - Output will be in the PLAN_TABLE table
 - Simple display:
 SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());
 - See: http://goo.gl/Ho56k (Oracle® Database Performance Tuning Guide 10g Release 2 (10.2) section 19: Using Explain Plan)
- MySQL

EXPLAIN SELECT ...

- Simply returns the results
- See: http://goo.gl/Tf5SH (MySQL 5.0 Reference Manual. Section 7.2. Obtaining Query Execution Plan Information)

Measures of Query Cost

- Cost is generally measured as total elapsed time for answering query
 - Many factors contribute to time cost
 - disk accesses, CPU, or even network communication
- Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by taking into account
 - Number of seeks* average-seek-cost
 - Number of blocks read * average-block-read-cost
 - Number of blocks written * average-block-write-cost
 - Cost to write a block is greater than cost to read a block
 - data is read back after being written to ensure that the write was successful

Measures of Query Cost (Cont.)

- For simplicity we just use the number of block transfers from disk and the number of seeks as the cost measures
 - $-t_{\tau}$ time to transfer one block
 - $-t_s$ time for one seek
 - Cost for b block transfers plus S seeks $b * t_{\tau} + S * t_{s}$
- We ignore CPU costs for simplicity
 - Real systems do take CPU cost into account
- We do not include cost to writing output to disk in our cost formulae

Selection Operation

- File scan/Table scan
- Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the selection condition.
 - Cost estimate = b_r block transfers + 1 seek
 - b_r denotes number of blocks containing records from relation r
 - If selection is on a key attribute, can stop on finding record
 - cost = $(b_r/2)$ block transfers + 1 seek
 - Linear search can be applied regardless of
 - selection condition or
 - · ordering of records in the file, or
 - availability of indices
- Note: binary search generally does not make sense since data is not stored consecutively
 - except when there is an index available,
 - and binary search requires more seeks than index search

Selections Using Indices

- Index scan search algorithms that use an index
 - selection condition must be on search-key of index.
- A2 (primary index, equality on key). Retrieve a single record that satisfies the corresponding equality condition
 - $Cost = (h_i + 1) * (t_T + t_S)$
 - for every key in the index, retrieve one block from disk
- A3 (primary index, equality on nonkey) Retrieve multiple records.
 - Records will be on consecutive blocks
 - Let b = number of blocks containing matching records
 - $Cost = h_i * (t_T + t_S) + t_S + t_T * b$
 - For every key in index, retrieve as many blocks from disk as necessary to retrieve all instances of that search key
 - * h_i height of index

Selections Using Indices

- A4 (secondary index, equality on nonkey).
 - Retrieve a single record if the search-key is a candidate key
 - $Cost = (h_i + 1) * (t_T + t_S)$
 - Retrieve multiple records if search-key is not a candidate key
 - each of n matching records may be on a different block
 - Cost = $(h_i + n) * (t_T + t_S)$
 - Can be very expensive!

Selections Involving Comparisons

- Can implement selections of the form $\sigma_{A \leq V}(r)$ or $\sigma_{A \geq V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:
- A5 (primary index, comparison). (Relation is sorted on A)
 - For $\sigma_{A \ge V}(r)$ use index to find first tuple $\ge V$ and scan relation sequentially from there
 - For $\sigma_{A \leq V}(r)$ just scan relation sequentially till first tuple > V; do not use index
- A6 (secondary index, comparison).
 - For $\sigma_{A \ge V}(r)$ use index to find first index entry $\ge v$ and scan index sequentially from there, to find pointers to records.
 - For $\sigma_{A \le V}(r)$ just scan leaf pages of index finding pointers to records, till first entry > V
 - In either case, retrieve records that are pointed to
 - requires an I/O for each record
 - Linear file scan may be cheaper

Implementation of Complex Selections

- Conjunction: $\sigma_{\theta 1} \wedge \theta_{\theta 2} \wedge \dots \theta_{\theta n}(r)$
- A7 (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for $\sigma_{\theta_i}(r)$.
 - Test other conditions on tuple after fetching it into memory buffer.
- A8 (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.
- A9 (conjunctive selection by intersection of identifiers).
 - Requires indices with record pointers.
 - Use corresponding index for each condition, and take intersection of all the obtained sets of record pointers.
 - Then fetch records from file
 - If some conditions do not have appropriate indices, apply test in memory.

Algorithms for Complex Selections

- Disjunction: $\sigma_{\theta 1} \vee_{\theta 2} \vee \ldots_{\theta n} (r)$.
- A10 (disjunctive selection by union of identifiers).
 - Applicable if all conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets of record pointers.
 - Then fetch records from file
 - Negation: $\sigma_{-\theta}(r)$
 - Use linear scan on file
 - If very few records satisfy $\neg \theta$, and an index is applicable to θ
 - Find satisfying records using index and fetch from file

Join Operation

- Several different algorithms to implement joins
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Choice based on cost estimate
- Examples use the following information
 - Number of records of student: 5,000 takes: 10,000
 - Number of blocks of student: 100 takes: 400

Nested-Loop Join

```
• To compute the theta join r\bowtie_{\theta} s for each tuple t_r in r do begin for each tuple t_s in s do begin test pair (t_r,t_s) to see if they satisfy the join condition \theta if they do, add t_r \cdot t_s to the result. end end
```

- r is called the outer relation and s the inner relation of the join.
- Requires no indices and can be used with any kind of join condition.
- Expensive since it examines every pair of tuples in the two relations.

Nested-Loop Join (Cont.)

 In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is

$$n_r * b_s + b_r$$
 block fransfers, plus $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.
- Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```
for each block B_r of r do begin
for each block B_s of s do begin
for each tuple t_r in B_r do begin
Check if (t_r, t_s) satisfy the join condition
if they do, add t_r \cdot t_s to the result.
end
end
```

Block Nested-Loop Join (Cont.)

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
- Best case: $b_r + b_s$ block transfers + 2 seeks.
- Improvements to nested loop and block nested loop algorithms:
 - In block nested-loop, use M 2 disk blocks as blocking unit for outer relations, where M = memory size in blocks; use remaining two blocks to buffer inner relation and output
 - Cost = $\lceil b_r / (M-2) \rceil * b_s + b_r$ block transfers + $2 \lceil b_r / (M-2) \rceil$ seeks
 - If equi-join attribute forms a key or inner relation, stop inner loop on first match
 - Scan inner loop forward and backward alternately, to make use of the blocks remaining in buffer (with LRU replacement)
 - Use index on inner relation if available (next slide)

Indexed Nested-Loop Join

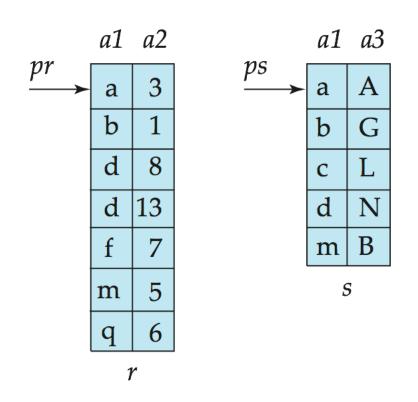
- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - an index is available on the inner relation's join attribute
 - Can construct an index just to compute a join.
- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r .
- Worst case: buffer has space for only one page of r, and, for each tuple in r, we perform an index lookup on s.
- Cost of the join: $b_r(t_T + t_S) + n_r * c$
 - Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r
 - c can be estimated as cost of a single selection on s using the join condition.
- If indices are available on join attributes of both *r* and *s*, use the relation with fewer tuples as the outer relation.

Example of Nested-Loop Join Costs

- Compute *student* ⋈ *takes*, with *student* as the outer relation.
- Let takes have a primary B⁺-tree index on the attribute ID, which contains 20 entries in each index node.
- Since *takes* has 10,000 tuples, the height of the tree is 4, and one more access is needed to find the actual data
- student has 5000 tuples
- Cost of block nested loops join
 - -400*100 + 100 = 40,100 block transfers +2*100 = 200 seeks
 - · assuming worst case memory
 - may be significantly less with more memory
- Cost of indexed nested loops join
 - -100 + 5000 * 5 = 25,100 block transfers and seeks.
 - CPU cost likely to be less than that for block nested loops join

Merge-Join

- Sort both relations on their join attribute (if not already sorted on the join attributes).
- 2. Merge the sorted relations to join them
 - 1. Join step is similar to the merge stage of the sort-merge algorithm.
 - 2. Main difference is handling of duplicate values in join attribute every pair with same value on join attribute must be matched
 - Detailed algorithm in book



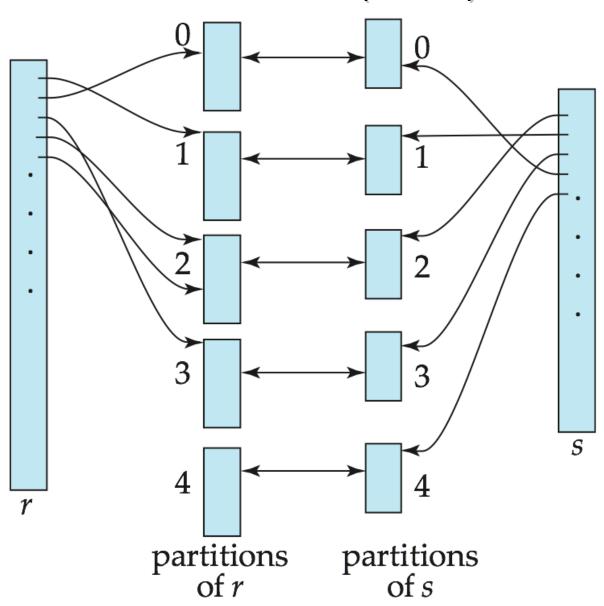
Merge-Join (Cont.)

- Can be used only for equi-joins and natural joins
- Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory
- Thus the cost of merge join is: $b_r + b_s$ block transfers $+ \lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil$ seeks
 - + the cost of sorting if relations are unsorted.
- hybrid merge-join: If one relation is sorted, and the other has a secondary B+-tree index on the join attribute
 - Merge the sorted relation with the leaf entries of the B⁺-tree.
 - Sort the result on the addresses of the unsorted relation's tuples
 - Scan the unsorted relation in physical address order and merge with previous result, to replace addresses by the actual tuples
 - Sequential scan more efficient than random lookup

Hash-Join

- Applicable for equi-joins and natural joins.
- A hash function h is used to partition tuples of both relations
- *h* maps *JoinAttrs* values to {0, 1, ..., *n*}, where *JoinAttrs* denotes the common attributes of *r* and *s* used in the natural join.
 - $-r_0, r_1, \ldots, r_n$ denote partitions of r tuples
 - Each tuple $t_r \in r$ is put in partition r_i where $i = h(t_r[JoinAttrs])$.
 - $-r_0, r_1, \ldots, r_n$ denotes partitions of s tuples
 - Each tuple $t_s \in s$ is put in partition s_i , where $i = h(t_s [JoinAttrs])$.
- Note: In book, r_i is denoted as H_{ri} , s_i is denoted as H_{si} and n is denoted as n_h

Hash-Join (Cont.)



Hash-Join (Cont.)

- r tuples in r_i need only to be compared with s tuples in s_i Need not be compared with s tuples in any other partition, since:
 - an r tuple and an s tuple that satisfy the join condition will have the same value for the join attributes.
 - If that value is hashed to some value i, the r tuple has to be in r_i and the s tuple in s_i .

Hash-Join Algorithm

The hash-join of *r* and *s* is computed as follows.

- 1. Partition the relation s using hashing function h. When partitioning a relation, one block of memory is reserved as the output buffer for each partition.
- 2. Partition *r* similarly.
- 3. For each i:
 - (a) Load s_i into memory and build an in-memory hash index on it using the join attribute. This hash index uses a different hash function than the earlier one h.
 - (b) Read the tuples in r_i from the disk one by one. For each tuple t_r locate each matching tuple t_s in s_i using the in-memory hash index. Output the concatenation of their attributes.

Relation s is called the **build input** and r is called the **probe input**.

Hash-Join algorithm (Cont.)

- The value n and the hash function h is chosen such that each s_i should fit in memory.
 - Typically n is chosen as [b_s/M]* f where f is a "fudge factor", typically around 1.2
 - The probe relation partitions s_i need not fit in memory
- Recursive partitioning required if number of partitions n is greater than number of pages M of memory.
 - instead of partitioning n ways, use M-1 partitions for s
 - Further partition the M-1 partitions using a different hash function
 - Use same partitioning method on r
 - Rarely required: e.g., with block size of 4 KB, recursive partitioning not needed for relations of < 1GB with memory size of 2MB, or relations of < 36 GB with memory of 12 MB

Handling of Overflows

- Partitioning is said to be skewed if some partitions have significantly more tuples than some others
- Hash-table overflow occurs in partition s_i if s_i does not fit in memory. Reasons could be
 - Many tuples in s with same value for join attributes
 - Bad hash function
- Overflow resolution can be done in build phase
 - Partition s_i is further partitioned using different hash function.
 - Partition r_i must be similarly partitioned.
- Overflow avoidance performs partitioning carefully to avoid overflows during build phase
 - E.g. partition build relation into many partitions, then combine them
- Both approaches fail with large numbers of duplicates
 - Fallback option: use block nested loops join on overflowed partitions

Cost of Hash-Join

If recursive partitioning is not required: cost of hash join is

$$3(b_r + b_s) + 4 * n_h$$
 block transfers + $2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil)$ seeks

- If recursive partitioning required:
 - number of passes required for partitioning build relation

s is
$$\lceil log_{M-1}(b_s) - 1 \rceil$$

- best to choose the smaller relation as the build relation.
- Total cost estimate is:

$$2(b_r + b_s) \lceil log_{M-1}(b_s) - 1 \rceil + b_r + b_s$$
 block transfers +

$$2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil) \lceil \log_{M-1}(b_s) - 1 \rceil$$
 seeks

- If the entire build input can be kept in main memory no partitioning is required
 - Cost estimate goes down to $b_r + b_s$.

Example of Cost of Hash-Join

instructor ⋈ *teaches*

- Assume that memory size is 20 blocks
- $b_{instructor}$ = 100 and $b_{teaches}$ = 400.
- instructor is to be used as build input. Partition it into five partitions, each of size 20 blocks. This partitioning can be done in one pass.
- Similarly, partition *teaches* into five partitions, each of size 80. This is also done in one pass.
- Therefore total cost, ignoring cost of writing partially filled blocks:
 - -3(100 + 400) = 1500 block transfers +

$$2(\lceil 100/3 \rceil + \lceil 400/3 \rceil) = 336 \text{ seeks}$$

Hybrid Hash-Join

- Useful when memory sized are relatively large, and the build input is bigger than memory.
- Main feature of hybrid hash join:

Keep the first partition of the build relation in memory.

- E.g. With memory size of 25 blocks, instructor can be partitioned into five partitions, each of size 20 blocks.
 - Division of memory:
 - The first partition occupies 20 blocks of memory
 - 1 block is used for input, and 1 block each for buffering the other 4 partitions.
- teaches is similarly partitioned into five partitions each of size 80
 - the first is used right away for probing, instead of being written out
- Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for hybrid hash join, instead of 1500 with plain hash-join.
- Hybrid hash-join most useful if $M >> \sqrt{b_s}$

Complex Joins

Join with a conjunctive condition:

$$r_{\bowtie \theta 1 \land \theta 2 \land \dots \land \theta n} S$$

- Either use nested loops/block nested loops, or
- Compute the result of one of the simpler joins $r \bowtie_{\theta_i} s$
 - final result comprises those tuples in the intermediate result that satisfy the remaining conditions

$$\theta_1 \wedge \ldots \wedge \theta_{i-1} \wedge \theta_{i+1} \wedge \ldots \wedge \theta_n$$

Join with a disjunctive condition

$$r \bowtie_{\theta 1 \vee \theta 2 \vee ... \vee \theta n} s$$

- Either use nested loops/block nested loops, or
- Compute as the union of the records in individual joins $r \bowtie_{\theta_i} s$:

$$(r \bowtie_{\theta_1} s) \cup (r \bowtie_{\theta_2} s) \cup \ldots \cup (r \bowtie_{\theta_n} s)$$

Other Operations

- Duplicate elimination can be implemented via hashing or sorting.
 - On sorting duplicates will come adjacent to each other, and all but one set of duplicates can be deleted.
 - Optimization: duplicates can be deleted during run generation as well as at intermediate merge steps in external sort-merge.
 - Hashing is similar duplicates will come into the same bucket.

Projection:

- perform projection on each tuple
- followed by duplicate elimination.

Other Operations : Aggregation

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values
 - For count, min, max, sum: keep aggregate values on tuples found so far in the group.
 - When combining partial aggregate for count, add up the aggregates
 - For avg, keep sum and count, and divide sum by count at the end

Other Operations : Set Operations

- Set operations (∪, ∩ and —): can either use variant of merge-join after sorting, or variant of hash-join.
- E.g., Set operations using hashing:
 - 1. Partition both relations using the same hash function
 - Process each partition i as follows.
 - 1. Using a different hashing function, build an in-memory hash index on r_i .
 - 2. Process s_i as follows
 - $r \cup s$:
 - 1. Add tuples in s_i to the hash index if they are not already in it.
 - 2. At end of s_i add the tuples in the hash index to the result.

Other Operations : Set Operations

- E.g., Set operations using hashing:
 - 1. as before partition *r* and *s*,
 - 2. as before, process each partition *i* as follows
 - 1. build a hash index on r_i
 - 2. Process s_i as follows
 - $r \cap s$:
 - 1. output tuples in s_i to the result if they are already there in the hash index
 - -r-s:
 - 1. for each tuple in s_i , if it is there in the hash index, delete it from the index.
 - 2. At end of s_i add remaining tuples in the hash index to the result.

Other Operations : Outer Join

- Outer join can be computed either as
 - A join followed by addition of null-padded non-participating tuples.
 - by modifying the join algorithms.
- Modifying merge join to compute r \(\sigma \) s
 - In $r \implies s$, non participating tuples are those in $r \prod_R (r \bowtie s)$
 - Modify merge-join to compute $r \implies s$:
 - During merging, for every tuple t_r from r that do not match any tuple in s_r output t_r padded with nulls.
 - Right outer-join and full outer-join can be computed similarly.

Other Operations: Outer Join

- Modifying hash join to compute $r \implies s$
 - If r is probe relation, output non-matching r tuples padded with nulls
 - If r is build relation, when probing keep track of which r tuples matched s tuples. At end of s_i output non-matched r tuples padded with nulls

Sorting

- We may build an index on the relation, and then use the index to read the relation in sorted order. May lead to one disk block access for each tuple.
- For relations that fit in memory, techniques like quicksort can be used. For relations that don't fit in memory, external sort-merge is a good choice.

External Sort-Merge

Let *M* denote memory size (in pages).

1. Create sorted runs. Let *i* be 0 initially.

Repeatedly do the following till the end of the relation:

- (a) Read *M* blocks of relation into memory (b) Sort the in-memory blocks
- (c) Write sorted data to run R_i; increment i.

Let the final value of *i* be *N*

2. Merge the runs (next slide).....

External Sort-Merge (Cont.)

- **2.** Merge the runs (N-way merge). We assume (for now) that N < M.
 - Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read the first block of each run into its buffer page

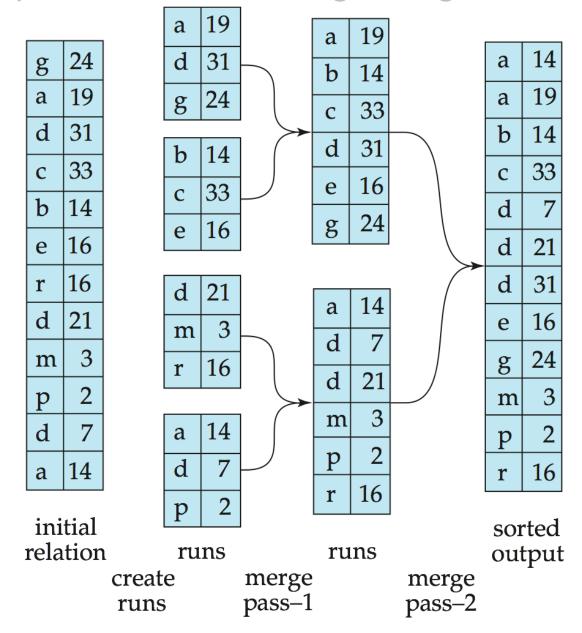
2. repeat

- 1. Select the first record (in sort order) among all buffer pages
- 2. Write the record to the output buffer. If the output buffer is full write it to disk.
- 3. Delete the record from its input buffer page.
 If the buffer page becomes empty then read the next block (if any) of the run into the buffer.
- until all input buffer pages are empty:

External Sort-Merge (Cont.)

- If $N \ge M$, several merge passes are required.
 - In each pass, contiguous groups of M 1 runs are merged.
 - A pass reduces the number of runs by a factor of M -1, and creates runs longer by the same factor.
 - E.g. If M=11, and there are 90 runs, one pass reduces the number of runs to 9, each 10 times the size of the initial runs
 - Repeated passes are performed till all runs have been merged into one.

Example: External Sorting Using Sort-Merge



External Merge Sort (Cont.)

- Cost analysis:
 - Total number of merge passes required: $\lceil \log_{M-1}(b/M) \rceil$.
 - Block transfers for initial run creation as well as in each pass is $2b_r$
 - for final pass, we don't count write cost
 - we ignore final write cost for all operations since the output of an operation may be sent to the parent operation without being written to disk
 - Thus total number of block transfers for external sorting:

$$b_r(2\lceil \log_{M-1}(b_r/M) \rceil + 1)$$

Seeks: next slide

External Merge Sort (Cont.)

- Cost of seeks
 - During run generation: one seek to read each run and one seek to write each run
 - $2\lceil b_r/M \rceil$
 - During the merge phase
 - Buffer size: b_b (read/write b_b blocks at a time)
 - Need $2 \lceil b_r / b_b \rceil$ seeks for each merge pass
 - except the final one which does not require a write
 - Total number of seeks:

$$2\lceil b_r/M \rceil + \lceil b_r/b_b \rceil (2\lceil \log_{M-1}(b_r/M) \rceil - 1)$$