

Relational algebra

Relational Algebra
• Procedural language
• Six basic operators

– select: σ
– project: ∏
– union: ∪
– set difference: –
– Cartesian product: x
– rename: ρ

• The operators take one or two relations as inputs and
produce a new relation as a result.

Select Operation – Example

Relation r

σA=B ^ D > 5 (r)

Select Operation
• Notation: σ p(r)

• p is called the selection predicate
• Defined as:

 σp(r) = {t | t ∈ r and p(t)}

Where p is a formula in propositional calculus consisting of terms
connected by : ∧ (and), ∨ (or), ¬ (not)
Each term is one of:

<attribute>op <attribute> or <constant>
 where op is one of: =, ≠, >, ≥. <. ≤

• Example of selection:

 σ dept_name=“Physics”(instructor)

Project Operation – Example

Relation r:

 ∏A,C (r)

Project Operation

• Notation:

where A1, A2 are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained
by erasing the columns that are not listed

• Duplicate rows removed from result, since relations are sets

• Example: To eliminate the dept_name attribute of instructor

 ∏ID, name, salary (instructor)

)(,,2,1
r

kAAA ∏

Union Operation – Example

Relations r, s:

r ∪ s:

Union Operation
• Notation: r ∪ s
• Defined as:

r ∪ s = {t | t ∈ r or t ∈ s}
• For r ∪ s to be valid.

1. r, s must have the same arity (same number of
attributes)
2. The attribute domains must be compatible (example: 2nd
column of r deals with the same type of values as does the
2nd column of s)

• Example: to find all courses taught in the Fall 2009

semester, or in the Spring 2010 semester, or in both

 ∏course_id (σ semester=“Fall” Λ year=2009 (section)) ∪

 ∏course_id (σ semester=“Spring” Λ year=2010 (section))

Set difference of two relations

Relations r, s:

r – s:

Set Difference Operation
• Notation r – s
• Defined as:

 r – s = {t | t ∈ r and t ∉ s}

• Set differences must be taken between compatible relations.
– r and s must have the same arity
– attribute domains of r and s must be compatible

• Example: to find all courses taught in the Fall 2009 semester, but not

in the Spring 2010 semester

 ∏course_id (σ semester=“Fall” Λ year=2009 (section)) −

 ∏course_id (σ semester=“Spring” Λ year=2010 (section))

Cartesian-Product Operation – Example

Relations r, s:

r x s:

Cartesian-Product Operation
• Notation r x s

• Defined as:
r x s = {t q | t ∈ r and q ∈ s}

• Assume that attributes of r(R) and s(S) are disjoint. (That is,
R ∩ S = ∅).

• If attributes of r(R) and s(S) are not disjoint, then renaming
must be used.

Composition of Operations
• Can build expressions using multiple operations
• Example: σA=C(r x s)

• r x s

• σA=C(r x s)

Rename Operation
• Allows us to name, and therefore to refer to, the results of

relational-algebra expressions.
• Allows us to refer to a relation by more than one name.
• Example:
 ρ x (E)

returns the expression E under the name X
• If a relational-algebra expression E has arity n, then

returns the result of expression E under the name X, and
with the attributes renamed to A1 , A2 , …., An .

)(),...,2,1(E
nAAAxρ

Example Query
• Find the largest salary in the university

– Step 1: find instructor salaries that are less than some other
instructor salary (i.e. not maximum)

–using a copy of instructor under a new name d

∏instructor.salary (σ instructor.salary < d.salary

 (instructor x ρd (instructor)))
– Step 2: Find the largest salary

∏salary (instructor) –
 ∏instructor.salary (σ instructor.salary < d.salary

 (instructor x ρd (instructor)))

Example Queries
• Find the names of all instructors in the Physics department,

along with the course_id of all courses they have taught

● Query 1

 ∏instructor.ID,course_id (σdept_name=“Physics” (

 σ instructor.ID=teaches.ID (instructor x teaches)))

● Query 2

 ∏instructor.ID,course_id (σinstructor.ID=teaches.ID (

 σ dept_name=“Physics” (instructor) x teaches))

Formal Definition
• A basic expression in the relational algebra consists of

either one of the following:
– A relation in the database

– A constant relation

• Let E1 and E2 be relational-algebra expressions; the

following are all relational-algebra expressions:

– E1 ∪ E2

– E1 – E2

– E1 x E2

– σp (E1), P is a predicate on attributes in E1

– ∏s(E1), S is a list consisting of some of the attributes in E1

– ρ x (E1), x is the new name for the result of E1

Additional Operations
We define additional operations that do not add any power to
 the relational algebra, but that simplify common queries.

• Set intersection
• Natural join
• Assignment
• Outer join

Set-Intersection Operation
• Notation: r ∩ s
• Defined as:
• r ∩ s = { t | t ∈ r and t ∈ s }
• Assume:

– r, s have the same arity
– attributes of r and s are compatible

• Note: r ∩ s = r – (r – s)

Set-Intersection Operation – Example
• Relation r, s:

• r ∩ s

Natural-Join Operation
• Let r and s be relations on schemas R and S respectively.

Then, r s is a relation on schema R ∪ S obtained as
follows:
– Consider each pair of tuples tr from r and ts from s.

– If tr and ts have the same value on each of the attributes in R ∩ S,
add a tuple t to the result, where

• t has the same value as tr on r

• t has the same value as ts on s

• Example:
R = (A, B, C, D)
S = (E, B, D)
– Result schema = (A, B, C, D, E)
– r s is defined as:

 ∏r.A, r.B, r.C, r.D, s.E (σr.B = s.B ∧ r.D = s.D (r x s))

Natural Join Example
• Relations r, s:

r s

Natural Join and Theta Join
• Find the names of all instructors in the Comp. Sci.

department together with the course titles of all the courses
that the instructors teach
– ∏ name, title (σ dept_name=“Comp. Sci.” (instructor teaches course))

• Natural join is associative
– (instructor teaches) course is equivalent to

instructor (teaches course)
• Natural join is commutative

– instruct teaches is equivalent to
teaches instructor

• The theta join operation r θ s is defined as
– r θ s = σθ (r x s)

Assignment Operation
• The assignment operation (←) provides a convenient way to

express complex queries.
● Write query as a sequential program consisting of

• a series of assignments
• followed by an expression whose value is displayed as a result of the query.

● Assignment must always be made to a temporary relation variable.

Outer Join
• An extension of the join operation that avoids loss of

information.
• Computes the join and then adds tuples form one relation

that does not match tuples in the other relation to the result
of the join.

• Uses null values:
– null signifies that the value is unknown or does not exist
– All comparisons involving null are (roughly speaking) false by

definition.

Outer Join – Example
• Relation instructor1

• Relation teaches1

ID course_id

10101
12121
76766

CS-101
FIN-201
BIO-101

Comp. Sci.
Finance
Music

ID dept_name

10101
12121
15151

name

Srinivasan
Wu
Mozart

■ Left Outer Join

 instructor teaches

Outer Join – Example
• Join

instructor teaches

ID dept_name

10101
12121

Comp. Sci.
Finance

course_id

 CS-101
 FIN-201

name

Srinivasan
Wu

ID dept_name

10101
12121
15151

Comp. Sci.
Finance
Music

course_id

 CS-101
 FIN-201
 null

name

Srinivasan
Wu
Mozart

Outer Join – Example

■ Full Outer Join

 instructor teaches

■ Right Outer Join

 instructor teaches
ID dept_name

10101
12121
76766

Comp. Sci.
Finance

null

course_id

 CS-101
 FIN-201
 BIO-101

name

Srinivasan
Wu
null

ID dept_name

10101
12121
15151
76766

Comp. Sci.
Finance
Music
null

course_id

 CS-101
 FIN-201
 null
 BIO-101

name

Srinivasan
Wu
Mozart
null

Outer Join using Joins
• Outer join can be expressed using basic operations

– e.g. r s can be written as
 (r s) U (r – ∏R(r s) x {(null, …, null)}

Null Values

• It is possible for tuples to have a null value, denoted by null,

for some of their attributes

• null signifies an unknown value or that a value does not

exist.

• The result of any arithmetic expression involving null is null.

• Aggregate functions simply ignore null values (as in SQL)

• For duplicate elimination and grouping, null is treated like

any other value, and two nulls are assumed to be the same

(as in SQL)

Null Values
• Comparisons with null values return the special truth value:

unknown
– If false was used instead of unknown, then not (A < 5)

 would not be equivalent to A >= 5
• Three-valued logic using the truth value unknown:

– OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown

– AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

– NOT: (not unknown) = unknown
– In SQL “P is unknown” evaluates to true if predicate P evaluates to

unknown
• Result of select predicate is treated as false if it evaluates

to unknown

Division Operator
• Given relations r(R) and s(S), such that S ⊂ R, r ÷ s is the

largest relation t(R-S) such that
 t x s ⊆ r

• E.g. let r(ID, course_id) = ∏ID, course_id (takes) and
 s(course_id) = ∏course_id (σdept_name=“Biology”(course)
then r ÷ s gives us students who have taken all courses in
the Biology department

• Can write r ÷ s as

temp1 ← ∏R-S (r)

temp2 ← ∏R-S ((temp1 x s) – ∏R-S,S (r))

result = temp1 – temp2

● The result to the right of the ← is assigned to the relation variable on

the left of the ←.

● May use variable in subsequent expressions.

Extended Relational-Algebra-Operations
• Generalized Projection
• Aggregate Functions

Generalized Projection
• Extends the projection operation by allowing arithmetic

functions to be used in the projection list.

• E is any relational-algebra expression

• Each of F1, F2, …, Fn are are arithmetic expressions

involving constants and attributes in the schema of E.
• Given relation instructor(ID, name, dept_name, salary)

where salary is annual salary, get the same information but
with monthly salary

∏ID, name, dept_name, salary/12 (instructor)

∏F 1

,F 2
, . . . ,F nE 

Aggregate Functions and Operations
• Aggregation function takes a collection of values and

returns a single value as a result.
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

• Aggregate operation in relational algebra

E is any relational-algebra expression
– G1, G2 …, Gn is a list of attributes on which to group (can be empty)
– Each Fi is an aggregate function
– Each Ai is an attribute name

• Note: Some books/articles use γ instead of (Calligraphic
G)

)()(,,(),(,,, 221121
E

nnn AFAFAFGGG 

Aggregate Operation – Example
• Relation r:

A B

α
α
β
β

α
β
β
β

C

7

7

3

10

 sum(c) (r) sum(c)

27

Aggregate Operation – Example
• Find the average salary in each department
 dept_name avg(salary) (instructor)

avg_salary

Aggregate Functions (Cont.)
• Result of aggregation does not have a name

– Can use rename operation to give it a name
– For convenience, we permit renaming as part of aggregate

operation

dept_name avg(salary) as avg_sal (instructor)

Modification of the Database
• The content of the database may be modified using the

following operations:
– Deletion
– Insertion
– Updating

• All these operations can be expressed using the assignment
operator

Multiset Relational Algebra
• Pure relational algebra removes all duplicates

– e.g. after projection
• Multiset relational algebra retains duplicates, to match SQL

semantics
– SQL duplicate retention was initially for efficiency, but is now a

feature
• Multiset relational algebra defined as follows

– selection: has as many duplicates of a tuple as in the input, if the
tuple satisfies the selection

– projection: one tuple per input tuple, even if it is a duplicate
– cross product: If there are m copies of t1 in r, and n copies of t2 in

s, there are m x n copies of t1.t2 in r x s
– Other operators similarly defined

• E.g. union: m + n copies, intersection: min(m, n) copies
 difference: min(0, m – n) copies

SQL and Relational Algebra
• select A1, A2, .. An

from r1, r2, …, rm
where P

 is equivalent to the following expression in multiset
relational algebra

 ∏ A1, .., An (σ P (r1 x r2 x .. x rm))
• select A1, A2, sum(A3)

from r1, r2, …, rm
where P
group by A1, A2

 is equivalent to the following expression in multiset
relational algebra

 A1, A2 sum(A3) (σ P (r1 x r2 x .. x rm)))

SQL and Relational Algebra
• More generally, the non-aggregated attributes in the select

clause may be a subset of the group by attributes, in which
case the equivalence is as follows:

select A1, sum(A3)
from r1, r2, …, rm
where P
group by A1, A2

 is equivalent to the following expression in multiset
relational algebra

 ∏ A1,sumA3(A1,A2 sum(A3) as sumA3(σ P (r1 x r2 x .. x rm)))

