
 

Introduction to SQL



 

Introduction to Oracle
• Log onto grace system
• Go into public directory

cd public/Mondial_dataset
• Start oracle

tap oraclient
• Your SID is 'dbclass1'
• Start sqlplus

sqlplus
• Enter user name and password
• To change your password

alter user <username> identified by <pass>;



 

Load tables
• Copy Mondial_dataset from public directory to your own

cp -r ../../public/Mondial_dataset .
cd Mondial_dataset

• Start sqlplus
sqlplus

• Create tables
@ create

• Load data
@ data

• If you need to trash everything
@ drop



 

Basic Query Structure 
• A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

– Ai represents an attribute

– Ri represents a relation

– P is a predicate.

• The result of an SQL query is a relation.



 

The select Clause
• The select clause list the attributes desired in the result of 

a query
– corresponds to the projection operation of the relational algebra

• Example: find the names of all countries:
select Name
from Country

• NOTE:  SQL names are case insensitive (i.e., you may use 
upper- or lower-case letters.)  
– E.g.,  Name ≡ NAME ≡ name

– Some people use upper case wherever we use bold font.



 

The select Clause (Cont.)
• SQL allows duplicates in relations as well as in query 

results.

• To force the elimination of duplicates, insert the keyword 
distinct after select.

• Find the names of all cities that have the headquarters of 
an organization

select distinct city
from organization

• The keyword all specifies that duplicates not be removed.

select all city
from organization



 

The select Clause (Cont.)
• An asterisk in the select clause denotes “all attributes”

select *
from organization

• The select clause can contain arithmetic expressions 
involving the operation, +, –, ∗, and /, and operating on 
constants or attributes of tuples.

• The query: 

                  select code, name, area/100
                  from country

would return a relation that is the same as the country 
relation, except that the value of the attribute area is 
divided by 100.



 

The where Clause
• The where clause specifies conditions that the result must 

satisfy
– Corresponds to the selection predicate of the relational algebra.  

• To find all cities in USA  with population > 80000

select name
from city
where country = ‘USA' and population > 80000

• Comparison results can be combined using the logical 
connectives and, or, and not. 

• Comparisons can be applied to results of arithmetic 
expressions.



 

The where clause...
• Find all provinces (states) in the USA that have more than 

20 people per  square mile
•

select name 
from province
where country = 'USA'
     and population / area > 20



 

The from Clause

• The from clause lists the relations involved in the 
query
– Corresponds to the Cartesian product operation of the 

relational algebra.

• Find the Cartesian product country X province

select ∗
from country,province

– generates every possible country – province pair, with all 
attributes from both relations.

• Cartesian product not very useful directly, but useful 
combined with where-clause condition (selection 
operation in relational algebra).



 

Joins
• For the names of all countries in the UN

 select country.name, population
          from country, organization
          where   organization.country = code 
               and organization.name = 'United Nations'

• Note: you need to clarify ambiguous names

           



 

Rename variables/relations
             select c.name, population

          from country [as] c, organization [as] o
          where   o.country = code 
               and o.name = 'United Nations'



 

Natural join
• Matches attributes with same name

               select ∗
from country natural join province

• Caveat: country.name and province.name don't mean the 
same thing – result is incorrect/unexpected

• But

select *
from economy natural join population

works! (economy.country and population.country refer to the 
same thing)



 

Natural join cont..
• How do you get the name of the country as well?



 

String Operations
• SQL includes a string-matching operator for comparisons on 

character strings.  The operator “like” uses patterns that are 
described using two special characters:
– percent (%).  The % character matches any substring.

– underscore (_).  The _ character matches any character.

• Find the names of all countries whose name includes the substring 
“man”.

select name
from country
where name like '%man%' 

• Match the string “100 %”
like ‘100 \%'  escape  '\' 

• SQL supports a variety of string operations such as
– concatenation (using “||”)

– converting from upper to lower case (and vice versa)

– finding string length, extracting substrings, etc.



 

Ordering the Display of Tuples
• List in alphabetic order the names of all instructors 

     select distinct name
from    city
where country='USA'
order by name

• We may specify desc for descending order or asc for 
ascending order, for each attribute; ascending order is the 
default.
– Example:  order by name desc

• Can sort on multiple attributes
– Example: order by  country,name



 

Where Clause Predicates
• SQL includes a between comparison operator

• Example:  Find the names of all countries with surface 
area between 90,000 and 100,000 km2 (that is, ≥ 90,000 
and ≤ 100,000)
– select name

from country
where area between 90000 and 100000



 

Set Operations
• Find cities in the US with population > 1000000 or < 

500000

• Find cities in the US with the same name as cities in 
Canada

• Find states in the US whose names are not names of 
rivers

(select name from city where country='USA' and population > 1000000)
 union
(select name from city where country='USA' and population< 500000)

(select name from province where country='USA')
 minus
(select name from river)

(select name from city where country='USA') 
 intersect
(select name from city where country='CDN')



 

Set Operations
• Set operations union, intersect, and minus 

– Each of the above operations automatically eliminates duplicates

 To retain all duplicates use the corresponding multiset 
versions union all, intersect all and minus all.

 Suppose a tuple occurs m times in r and n times in s, then, 
it occurs:
– m  + n times in r union all s

– min(m,n) times in r intersect all s

– max(0, m – n) times in r minus all s



 

Null Values
• It is possible for tuples to have a null value, denoted by 

null, for some of their attributes

• null signifies an unknown value or that a value does not 
exist.

• The result of any arithmetic expression involving null is null
– Example:  5 + null  returns null

• The predicate  is null can be used to check for null values.
– Example: Find all countries with no capital

select name
from country
where capital is null

Note: capital = null doesn't work



 

Null Values and Three Valued Logic
• Any comparison with null returns unknown

– Example: 5 < null   or   null <> null    or    null = null

• Three-valued logic using the truth value unknown:
– OR: (unknown or true)   = true,

       (unknown or false)  = unknown
       (unknown or unknown) = unknown

– AND: (true and unknown)  = unknown,    
         (false and unknown) = false,
         (unknown and unknown) = unknown

– NOT:  (not unknown) = unknown

– “P is unknown” evaluates to true if predicate P evaluates to 
unknown

• Result of where clause predicate is treated as false if it 
evaluates to unknown



 

Aggregate Functions
• These functions operate on the multiset of values of a 

column of a relation, and return a value

avg: average value
min:  minimum value
max:  maximum value
sum:  sum of values
count:  number of values



 

Aggregate Functions (Cont.)
• Find the average area of countries 

– select avg (area)
from country

• Find the total number of unique city names in America
– select count (distinct name)

from city
where country='USA'

• Find the number of tuples in the country relation
– select count (*)

from country;

   



 

Aggregate Functions – Group By
• Find the average salary of instructors in each department

– select dept_name, avg (salary)
from instructor
group by dept_name;

avg_salary



 

Aggregation (Cont.)
• Attributes in select clause outside of aggregate functions 

must appear in group by list
– /* erroneous query */

select country, avg (population)
from city
group by country;



 

Aggregate Functions – Having Clause
• Find the names and average population of cities from 

countries where the average population is > 100,000

       Note:  predicates in the having clause are applied after the 
                 formation of groups whereas predicates in the where 
                 clause are applied before forming groups

select country, avg (population)
from city
group by country
having avg (population) > 100000;



 

Null Values and Aggregates
• Total all salaries

select sum (population )
from city

– Above statement ignores null amounts

– Result is null if there is no non-null amount

• All aggregate operations except count(*) ignore tuples with 
null values on the aggregated attributes

• What if collection has only null values?
– count returns 0

– all other aggregates return null



 

Nested Subqueries
• SQL provides a mechanism for the nesting of subqueries.

• A subquery is a select-from-where expression that is 
nested within another query.

• A common use of subqueries is to perform tests for set 
membership, set comparisons, and set cardinality.



 

Example Query
• Find city names that occur in both the US and Canada

select distinct name

from city

where country = 'USA'

 and name in (select distinct name

                    from city

                    where country = 'CDN')

• Find city names that occur in the USA but not Canada
select distinct name

from city

where country = 'USA'

 and name not in (select distinct name

                    from city

                    where country = 'CDN')



 

Example Query
• Find the total number of (distinct) city names from 

countries through which the river Donau passes
select count (distinct name)

from city

where country in  

   (select country

    from geo_river

    where river='Donau')
•   Note: Above query can be written in a much simpler manner.  The 

               formulation above is simply to illustrate SQL features.



 

Set Comparison
• Find names of cities with population larger than at least 

one city in Canada
select distinct name

from city c1, city c2

where c1.country = 'USA'

     and c2.country = 'CDN'

     and c1.population > c2.population

• Same query using the SOME clause
select distinct name

from city 

where country = 'USA' and population > some (

       select population

       from city

       where country = 'CDN'

)



 

Definition of  Some Clause
• F <comp> some r ⇔ ∃ t ∈ r  such that (F <comp> t )

Where <comp> can be:  <,  ≤,  >,  =,  ≠

0

5

6

(5 < some ) = true

0
5

0

) = false

5

0
5(5 ≠ some ) = true (since 0 ≠ 5)

(read:  5 < some tuple in the relation) 

(5 < some

) = true(5 = some

(= some) ≡ in
However, (≠ some) ≡ not in



 

Example Query
• Find the names of cities in the US whose population is 

greater than that of all cities in Canada
select distinct name

from city 

where country = 'USA' and population > all (

       select population

       from city

       where country = 'CDN'

)



 

Definition of all Clause
• F <comp> all r ⇔ ∀ t ∈ r  (F <comp> t)

0

5

6

(5 < all ) = false

6
10

4

) = true

5

4
6(5 ≠ all ) = true (since 5 ≠ 4 and 5 ≠ 6)

(5 < all

) = false(5 = all

(≠ all) ≡ not in
However, (= all) ≡ in



 

Test for Empty Relations
• The exists construct returns the value true if the argument 

subquery is nonempty.

• exists  r ⇔  r ≠ Ø

• not exists r ⇔  r = Ø



 

Correlation Variables
• Yet another way of specifying the query “Find all cities in 

the US with population larger than some city in Canada”

   select name
   from city C
   where country = 'USA'  and 
               exists (select *
                            from city D
                            where country = ’CDN’ 
                                 and C.population > D.population);

• Correlated subquery

• Correlation name or correlation variable



 

Not Exists
• Find all cities in the US that have population larger than all 

cities in Canada
select name
   from city C
   where country = 'USA'  and 
               not exists (select *
                            from city D
                            where country = ’CDN’ 
                                 and C.population < D.population);



 

Derived Relations

• SQL allows a subquery expression to be used in the from 
clause

• Find the average population size of cities in countries with 
an average population size greater than 100,000. 
    select name, avg_population

from (select country.name as name, avg (city.population) as 
avg_population
           from country, city
           where country.code = city.country
           group by country.name)
where avg_population > 100000;

• Note that we do not need to use the having clause



 

With Clause
• The with clause provides a way of defining a temporary 

view whose definition is available only to the query in 
which the with clause occurs. 

     with avg_pop (name, avg_population) as 
         (select country.name, avg (city.population)
           from country, city
           where country.code = city.country
           group by country.name)
     select name, avg_population
     from avg_pop
     where avg_population > 100000;


