Storage and File Structure



Chapter 10: Storage and File Structure

Overview of Physical Storage Media
Magnetic Disks

RAID

Tertiary Storage

Storage Access

File Organization

Organization of Records in Files
Data-Dictionary Storage



Classification of Physical Storage Media

Speed with which data can be accessed
Cost per unit of data

Reliability

— data loss on power failure or system crash
— physical failure of the storage device

Can differentiate storage into:
— volatile storage: loses contents when power is switched off

— non-volatile storage:
* Contents persist even when power is switched off.

* Includes secondary and tertiary storage, as well as batter- backed up
main-memory.



Storage Hierarchy

cache
Z\

A\V4

main memory

AN

AV4

flash memory

AN

AV

magnetic disk

AN

\V4
optical disk

-

magnetic tapes




Magnetic Hard Disk Mechanism

<— spindle

~{— arm assembly

sector s

read—write

|
cylinder c—r—: P
ea

platter

)

rotation

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives



RAID Levels

* Schemes to provide redundancy at lower cost by using disk
striping combined with parity bits

— Different RAID organizations, or RAID levels, have differing cost,
performance and reliability characteristics

® RAID Level 0: Block striping; non-redundant.

Used in high-performance applications where data loss is not critical.
= RAID Level 1: Mirrored disks with block striping

Offers best write performance.

Popular for applications such as storing log files in a database system.

sEEle

(a) RAID 0: nonredundant striping

FIEOEEEEE

(b) RAID 1: mirrored disks



RAID Levels (Cont.)

* RAID Level 2: Memory-Style Error-Correcting-Codes
(ECC) with bit striping.

* RAID Level 3: Bit-Interleaved Parity

— a single parity bit is enough for error correction, not just detection,
since we know which disk has failed

* When writing data, corresponding parity bits must also be computed and
written to a parity bit disk

* To recover data in a damaged disk, compute XOR of bits from other disks
(including parity bit disk)

SuuuEEE

(c) RAID 2: memory- %tvlL error-correcting codes

oouuE

d) RAID 3: bit-interleaved parity



RAID Levels (Cont.)

* RAID Level 5: Block-Interleaved Distributed Parity;
partitions data and parity among all N + 1 disks, rather than
storing data in N disks and parity in 1 disk.

— E.g., with 5 disks, parity block for nth set of blocks is stored on disk
(n mod 5) + 1, with the data blocks stored on the other 4 disks.

(f) RAID 5: block-interleaved distributed parity

PO 0] 1| 2] 3
4|P1| 5| 6| 7
8| 9 |P2|10 |1
12 | 13 | 14 | P3 | 15
16 | 17 | 18 | 19 | P4




Hardware Issues (Cont.)

Latent failures: data successfully written earlier gets damaged
— can result in data loss even if only one disk fails

Data scrubbing:

— continually scan for latent failures, and recover from copy/parity

Hot swapping: replacement of disk while system is running,
without power down

— Supported by some hardware RAID systems,
— reduces time to recovery, and improves availability greatly

Many systems maintain spare disks which are kept online, and
ufs? 'IaS replacements for failed disks immediately on detection
of failure

— Reduces time to recovery greatly

Many hardware RAID systems ensure that a single point of
failure will not stop the functioning of the system by using

— Redundant power supplies with battery backup

— Multiple controllers and multiple interconnections to guard against
controller/interconnection failures



File Organization, Record Organization and
Storage Access



File Organization

* The database is stored as a collection of files. Each file is a
sequence of records. A record is a sequence of fields.

* One approach:
* assume record size is fixed
* each file has records of one particular type only
* different files are used for different relations

This case is easiest to implement; will consider variable length
records later.



Fixed-Length Records

* Simple approach:

— Store record j starting from byte n [J/(i— 1), where n is the size of
each record.

— Record access is simple but records may cross blocks

* Modification: do not allow records to cross block boundaries

Deletion of record i:
alternatives:

— moverecordsi+1,...,n
toi ..., n—1

— move record n toi

— do not move records, but
link all free records on a

free list

record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng,. 80000




Deleting record 3 and compacting

record O
record 1
record 2
record 4
record 5
record 6
record 7
record 8
record 9
record 10

record 11

10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000




Deleting record 3 and moving last record

record 0
record 1
record 2
record 11
record 4
record 5
record 6
record 7
record 8
record 9
record 10

10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
98345 | Kim Elec. Eng. 80000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000




Free Lists

Store the address of the first deleted record in the file
header.

Use this first record to store the address of the second
deleted record, and so on

Can think of these stored addresses as pointers since they
“point” to the location of a record.

More space efficient representation: reuse space for
normal attributes of free records to store pointers. (No
pointers stored in in-use records.)

header
record 0 | 10101 | Srinivasan | Comp. Sci. | 65000 >
record 1 o
record 2 | 15151 | Mozart Music 40000 >
record 3 | 22222 | Einstein Physics 95000
record 4 =
record 5 | 33456 | Gold Physics 87000
record 6 A
record 7 | 58583 | Califieri History 62000 - L
record 8 | 76543 | Singh Finance 80000
record9 | 76766 | Crick Biology 72000
record 10 | 83821 | Brandt Comp. Sci. | 92000
record 11 | 98345 | Kim Elec. Eng. 80000




Variable-Length Records

* Variable-length records arise in database systems in
several ways:

— Storage of multiple record types in a file.

— Record types that allow variable lengths for one or more fields
such as strings (varchar)

— Record types that allow repeating fields (used in some older data
models).

* Attributes are stored in order

* Variable length attributes represented by fixed size (offset,

length), with actual data stored after all fixed length
attributes

* Null values represented by null-value bitmap

Null bitmap (stored in 1 byte)
0000

21,5 26,10| 36, 10| 65000 10101 | Srinivasan| Comp. Sci.
Bytes 0 4 8 12 2021 26 36 45




Variable-Length Records: Slotted Page Structure

* Slotted page header contains:
— number of record entries
— end of free space in the block
— location and size of each record

* Records can be moved around within a page to keep them

contiguous with no empty space between them; entry in the
neader must be updated.

* Pointers should not point directly to record — instead they
should point to the entry for the record in header.

Block Header

Records

Size # Entries

Location

... Free Space ----

End of Free Space



Organization of Records in Files

Heap — a record can be placed anywhere in the file where
there is space

Sequential — store records in sequential order, based on
the value of the search key of each record

Hashing — a hash function computed on some attribute of
each record; the result specifies in which block of the file
the record should be placed

Records of each relation may be stored in a separate file. In
a multitable clustering file organization records of
several different relations can be stored in the same file

— I\//I(())tivation: store related records on the same block to minimize



Sequential File Organization

* Suitable for applications that require sequential processing
of the entire file

* The records in the file are ordered by a search-key

10101 |Srinivasan | Comp. Sci. | 65000 —
12121 |Wu Finance 90000

15151 |Mozart Music 40000 7
22222 | Einstein Physics 95000 L
32343 |El Said History 60000 L~
33456 |Gold Physics 87000 L
45565 |Katz Comp. Sci. | 75000 L
58583 |Califieri | History 62000 L
76543 |Singh Finance 80000 L
76766 | Crick Biology 72000 L
83821 |Brandt Comp. Sci. | 92000 L
98345 |Kim Elec. Eng. | 80000 -

- L



Sequential File Organization (Cont.)
* Deletion — use pointer chains

* |nsertion —locate the position where the record is to be

Inserted

— if there is free space insert there
— if no free space, insert the record in an overflow block
— In either case, pointer chain must be updated

* Need to reorganize the file
from time to time to restore
sequential order

10101

Srinivasan

Comp. Sci.

65000

J NANNNNANEANAN

12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000
32222 | Verdi Music 48000




Multitable Clustering File Organization

Store several relations in one file using a multitable clustering
file organization

dept_name building budget
department Comp. Sci. Taylor 100000
Physics Watson 70000
ID name dept_name salary
instructor 10101 Srinivasan | Comp. Sci. 65000
33456 | Gold Physics 87000
45565 Katz Comp. Sci. 75000
83821 Brandt Comp. Sci. 92000
Comp. Sci. Taylor 100000
multitable clustering 45564 Katz 75000
of department and 10101 Srinivasan | 65000
nstructor 83821 Brandt 92000
Physics Watson 70000
33456 Gold 87000




Multitable Clustering File Organization (cont.)

good for queries involving department < instructor, and for
gueries involving one single department and its instructors

bad for queries involving only department
results in variable size records
Can add pointer chains to link records of a particular

relation
Comp. Sci. Taylor 100000
45564 Katz 75000
10101 Srinivasan 65000
83821 Brandt 92000
Physics Watson 70000
33456 Gold 87000

1



Data Dictionary Storage

The Data dictionary (also called system catalog) stores
metadata; that is, data about data, such as:

Information about relations

— names of relations

— names, types and lengths of attributes of each relation
— names and definitions of views

— Integrity constraints

User and accounting information, including passwords
Statistical and descriptive data
— number of tuples in each relation

Physical file organization information
— How relation is stored (sequential/hash/...)
— Physical location of relation

Information about indices (Chapter 11)



Relational Representation of System Metadata

Relational
representation
on disk

Specialized
data structures
designed for
efficient
access, in
memory

Relation_metadata

relation name

number_of_attributes
storage_organization
location

Attribute_metadata

Index_metadata

index name

relation name
index_type
index_attributes

AA

relation_name
attribute _name
domain_type
position

length

View metadata

view nanie
definition

User_metadata

user_name
encrypted_password

group




Storage Access

A database file is partitioned into fixed-length storage units
called blocks. Blocks are units of both storage allocation
and data transfer.

Database system seeks to minimize the number of block
transfers between the disk and memory. We can reduce
the number of disk accesses by keeping as many blocks as
possible in main memory.

Buffer — portion of main memory available to store copies
of disk blocks.

Buffer manager — subsystem responsible for allocating
buffer space in main memory.



Buffer Manager

* Programs call on the buffer manager when they need a
block from disk.

* If the block is already in the buffer, buffer manager returns the
address of the block in main memory

* If the block is not in the buffer, the buffer manager:
* Allocates space in the buffer for the block

. Replacinﬁ (throwing out) some other block, if required, to make space for the
new block.

* Replaced block written back to disk only if it was modified since the most recent
time that it was written to/fetched from the disk.

* Reads the block from the disk to the buffer, and returns the address of the block
In main memory to requester.



Buffer-Replacement Policies

* Most oEerating systems replace the block least recently
used (LRU strategy)

* |dea behind LRU — use past pattern of block references as
a predictor of future references

* Queries have well-defined access patterns (such as
sequential scans), and a database system can use the
information in a user’s query to predict future references

— LRU can be a bad strategy for certain access patterns involving
repeated scans of data
. IFor example: when computing the join of 2 relations r and s by a nested
oops
for each tuple tr of rdo

for each tuple ts of s do
if the tuples tr and ts match ...

— Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable



Buffer-Replacement Policies (Cont.)

Pinned block — memory block that is not allowed to be
written back to disk.

Toss-immediate strateg?/ — frees the space occupied by a
block as soon as the final tuple of that block has been
processed

Most recently used (MRU) strategy — system must pin
the block currently being processed. After the final tuple of
that block has been processed, the block is unpinned, and it
becomes the most recently used block.

Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation

— E.g., the data dictionary is frequently accessed. Heuristic: keep
data-dictionary blocks in main memory buffer

Buffer managers also support forced output of blocks for
the purpose of recovery (more in Chapter 16)



