
Storage and File Structure

Chapter 10: Storage and File StructureChapter 10: Storage and File Structure
• Overview of Physical Storage Media
• Magnetic Disks
• RAID
• Tertiary Storage
• Storage Access
• File Organization
• Organization of Records in Files
• Data-Dictionary Storage

Classification of Physical Storage MediaClassification of Physical Storage Media
• Speed with which data can be accessed
• Cost per unit of data
• Reliability

– data loss on power failure or system crash
– physical failure of the storage device

• Can differentiate storage into:
– volatile storage: loses contents when power is switched off
– non-volatile storage:

• Contents persist even when power is switched off.
• Includes secondary and tertiary storage, as well as batter- backed up

main-memory.

Storage HierarchyStorage Hierarchy

Magnetic Hard Disk MechanismMagnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

RAID LevelsRAID Levels
• Schemes to provide redundancy at lower cost by using disk

striping combined with parity bits
– Different RAID organizations, or RAID levels, have differing cost,

performance and reliability characteristics

■ RAID Level 1: Mirrored disks with block striping

● Offers best write performance.

● Popular for applications such as storing log files in a database system.

■ RAID Level 0: Block striping; non-redundant.
● Used in high-performance applications where data loss is not critical.

RAID Levels (Cont.)RAID Levels (Cont.)
• RAID Level 2: Memory-Style Error-Correcting-Codes

(ECC) with bit striping.
• RAID Level 3: Bit-Interleaved Parity

– a single parity bit is enough for error correction, not just detection,
since we know which disk has failed

• When writing data, corresponding parity bits must also be computed and
written to a parity bit disk

• To recover data in a damaged disk, compute XOR of bits from other disks
(including parity bit disk)

RAID Levels (Cont.)RAID Levels (Cont.)
• RAID Level 5: Block-Interleaved Distributed Parity;

partitions data and parity among all N + 1 disks, rather than
storing data in N disks and parity in 1 disk.
– E.g., with 5 disks, parity block for nth set of blocks is stored on disk

(n mod 5) + 1, with the data blocks stored on the other 4 disks.

Hardware Issues (Cont.)Hardware Issues (Cont.)
• Latent failures: data successfully written earlier gets damaged

– can result in data loss even if only one disk fails
• Data scrubbing:

– continually scan for latent failures, and recover from copy/parity
• Hot swapping: replacement of disk while system is running,

without power down
– Supported by some hardware RAID systems,
– reduces time to recovery, and improves availability greatly

• Many systems maintain spare disks which are kept online, and
used as replacements for failed disks immediately on detection
of failure
– Reduces time to recovery greatly

• Many hardware RAID systems ensure that a single point of
failure will not stop the functioning of the system by using
– Redundant power supplies with battery backup
– Multiple controllers and multiple interconnections to guard against

controller/interconnection failures

File Organization, Record Organization and
Storage Access

File OrganizationFile Organization
• The database is stored as a collection of files. Each file is a

sequence of records. A record is a sequence of fields.
• One approach:

● assume record size is fixed
● each file has records of one particular type only
● different files are used for different relations

This case is easiest to implement; will consider variable length
records later.

Fixed-Length RecordsFixed-Length Records
• Simple approach:

– Store record i starting from byte n ∗ (i – 1), where n is the size of
each record.

– Record access is simple but records may cross blocks
• Modification: do not allow records to cross block boundaries

• Deletion of record i:
alternatives:
– move records i + 1, . . ., n

to i, . . . , n – 1
– move record n to i
– do not move records, but

link all free records on a
free list

Deleting record 3 and compactingDeleting record 3 and compacting

Deleting record 3 and moving last recordDeleting record 3 and moving last record

Free ListsFree Lists
• Store the address of the first deleted record in the file

header.
• Use this first record to store the address of the second

deleted record, and so on
• Can think of these stored addresses as pointers since they

“point” to the location of a record.
• More space efficient representation: reuse space for

normal attributes of free records to store pointers. (No
pointers stored in in-use records.)

Variable-Length RecordsVariable-Length Records
• Variable-length records arise in database systems in

several ways:
– Storage of multiple record types in a file.
– Record types that allow variable lengths for one or more fields

such as strings (varchar)
– Record types that allow repeating fields (used in some older data

models).
• Attributes are stored in order
• Variable length attributes represented by fixed size (offset,

length), with actual data stored after all fixed length
attributes

• Null values represented by null-value bitmap

Variable-Length Records: Slotted Page StructureVariable-Length Records: Slotted Page Structure
• Slotted page header contains:

– number of record entries
– end of free space in the block
– location and size of each record

• Records can be moved around within a page to keep them
contiguous with no empty space between them; entry in the
header must be updated.

• Pointers should not point directly to record — instead they
should point to the entry for the record in header.

Organization of Records in FilesOrganization of Records in Files
• Heap – a record can be placed anywhere in the file where

there is space
• Sequential – store records in sequential order, based on

the value of the search key of each record
• Hashing – a hash function computed on some attribute of

each record; the result specifies in which block of the file
the record should be placed

• Records of each relation may be stored in a separate file. In
a multitable clustering file organization records of
several different relations can be stored in the same file
– Motivation: store related records on the same block to minimize

I/O

Sequential File OrganizationSequential File Organization
• Suitable for applications that require sequential processing

of the entire file
• The records in the file are ordered by a search-key

Sequential File Organization (Cont.)Sequential File Organization (Cont.)
• Deletion – use pointer chains
• Insertion –locate the position where the record is to be

inserted
– if there is free space insert there
– if no free space, insert the record in an overflow block
– In either case, pointer chain must be updated

• Need to reorganize the file
 from time to time to restore
 sequential order

Multitable Clustering File OrganizationMultitable Clustering File Organization

Store several relations in one file using a multitable clustering
file organization

department

instructor

multitable clustering
of department and
instructor

Multitable Clustering File Organization (cont.)Multitable Clustering File Organization (cont.)
• good for queries involving department instructor, and for

queries involving one single department and its instructors
• bad for queries involving only department
• results in variable size records
• Can add pointer chains to link records of a particular

relation

Data Dictionary StorageData Dictionary Storage
The Data dictionary (also called system catalog) stores
metadata; that is, data about data, such as:

• Information about relations
– names of relations
– names, types and lengths of attributes of each relation
– names and definitions of views
– integrity constraints

• User and accounting information, including passwords
• Statistical and descriptive data

– number of tuples in each relation

• Physical file organization information
– How relation is stored (sequential/hash/…)
– Physical location of relation

• Information about indices (Chapter 11)

Relational Representation of System Metadata

• Relational
representation
on disk

• Specialized
data structures
designed for
efficient
access, in
memory

Storage AccessStorage Access
• A database file is partitioned into fixed-length storage units

called blocks. Blocks are units of both storage allocation
and data transfer.

• Database system seeks to minimize the number of block
transfers between the disk and memory. We can reduce
the number of disk accesses by keeping as many blocks as
possible in main memory.

• Buffer – portion of main memory available to store copies
of disk blocks.

• Buffer manager – subsystem responsible for allocating
buffer space in main memory.

Buffer ManagerBuffer Manager
● Programs call on the buffer manager when they need a
block from disk.

● If the block is already in the buffer, buffer manager returns the
address of the block in main memory

● If the block is not in the buffer, the buffer manager:
● Allocates space in the buffer for the block

● Replacing (throwing out) some other block, if required, to make space for the
new block.

● Replaced block written back to disk only if it was modified since the most recent
time that it was written to/fetched from the disk.

● Reads the block from the disk to the buffer, and returns the address of the block
in main memory to requester.

Buffer-Replacement PoliciesBuffer-Replacement Policies
• Most operating systems replace the block least recently

used (LRU strategy)
• Idea behind LRU – use past pattern of block references as

a predictor of future references
• Queries have well-defined access patterns (such as

sequential scans), and a database system can use the
information in a user’s query to predict future references
– LRU can be a bad strategy for certain access patterns involving

repeated scans of data
• For example: when computing the join of 2 relations r and s by a nested

loops
 for each tuple tr of r do
 for each tuple ts of s do
 if the tuples tr and ts match …

– Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

Buffer-Replacement Policies (Cont.)Buffer-Replacement Policies (Cont.)
• Pinned block – memory block that is not allowed to be

written back to disk.
• Toss-immediate strategy – frees the space occupied by a

block as soon as the final tuple of that block has been
processed

• Most recently used (MRU) strategy – system must pin
the block currently being processed. After the final tuple of
that block has been processed, the block is unpinned, and it
becomes the most recently used block.

• Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation
– E.g., the data dictionary is frequently accessed. Heuristic: keep

data-dictionary blocks in main memory buffer
• Buffer managers also support forced output of blocks for

the purpose of recovery (more in Chapter 16)

