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Central Issues in Biological Sequence Comparison

Definitions: What is one trying to find or optimize?

Algorithms: Can one find the proposed object optimally 

or in reasonable time optimize?

Statistics: Can one’s result be explained by chance?

In general there is a tension between questions.  A definition 

that is too simple may allow efficient algorithms, but may not 

yield results of biological interest.  However, a definition that 

includes most of the relevant biology may entail intractable 

algorithms and statistics.  The most successful approaches find 

a balance between these considerations.  



Path graphs
A global alignment may be viewed as a path through a directed path graph which 

begins at the upper left corner and ends at the lower right.  Diagonal steps correspond 

to substitutions, while horizontal or vertical steps correspond to indels.  Scores are 

associated with each edge, and the score of an alignment is the sum of the scores of 

the edges it traverses.  Each alignment corresponds to a unique path, and vice versa.
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Ungapped Local Alignments

When two sequences are compared, how great are the local 
alignment scores that can be expected to arise purely by 
chance?  In other words, when can a local alignment be 
considered statistically significant?  We will first develop the 
theory for local alignments without gaps.

Our simplified model of chance:  The various amino acids occur randomly 

and independently with the respective background probabilities
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Our scoring system:   The substitution score for aligning amino acids � and 
is �
,�.  A substitution score matrix then consists of the scores
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The BLOSUM-62 Substitution Score Matrix

A   4

R  -1  5

N  -2  0  6

D  -2 -2  1  6

C   0 -3 -3 -3  9

Q  -1  1  0  0 -3  5

E  -1  0  0  2 -4  2  5

G   0 -2  0 -1 -3 -2 -2  6

H  -2  0  1 -1 -3  0  0 -2  8

I  -1 -3 -3 -3 -1 -3 -3 -4 -3  4

L  -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4

K  -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5

M  -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5

F  -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6

P  -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7

S   1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4

T   0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5

W  -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11

Y  -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7

V   0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4

A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V

Henikoff, S. & Henikoff, J.G. (1992) Proc. Natl. Acad. Sci. USA 89:10915-10919.



Negative Expected Score

Score matrices used to seek local alignments of variable length 

should have a negative expected score:

∑ 	

	

,�	 	��
,� <   0.

Otherwise, alignments representing true homologies will tend 

to be extended with biologically meaningless noise:



Log-odds Scores

The scores of any substitution matrix (with a negative expected value 
and at least one positive score) can be written in the form

�
,� =    	ln	
��,�
����

	 	 	λ� =    log	
��,�
����

where λ is a positive scale parameter, and the �
,� are a set of positive 

numbers that sum to 1, called the target frequencies for aligned amino 
acid pairs.  Conversely, a non-trivial matrix constructed in this way will 
have a negative expected value and at least one positive score.

Karlin, S. & Altschul, S.F. (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268.



Proof

Define � � = 	∑ 	
	� 
!�,�"


,� .                     �(�)

Then � 0 = 	∑ 	
	� = 1.
,�

Also, �( 0 = ∑ 	
	��
,� < 0
,� ,                       1

and �(( � = 	∑ 	
	��
,�
� !�,�" > 0
,� .

In addition, because at least one �
,�
is positive, � � diverges for large �.

λ �

These facts imply that � � = 1 has a unique positive solution λ, which is

easily calculated.  Now define �
,� = 	
	� 
+!�,� . It is clear that all the �
,� are

positive, and furthermore that they sum to 1,  because ∑ �
,� = � λ = 1
,� .

Finally, solving for �
,� yields:       �
,� =	 ln
��,�
����

/λ .



Search Space Size

Subject sequence (or database) length:  n residues

Query sequence

length:                                         Search space size:   N = mn

m residues

Question:   Given a particular scoring system, how many distinct local alignments 

with score ≥ S can one expect to find by chance from the comparison of two 

random sequence of lengths m and n?  The answer, E(S,m,n), should depend 

upon S, and the lengths of the sequences compared.

Note:  We may define two local alignments to be distinct if they do not align any residue 

pairs in common.  Thus, the slight trimming or extension of a high-scoring local alignment 

does not yield a distinct high-scoring local alignment.



The Number of Random High-scoring Alignments 

Should be Proportional to the Search Space Size

Doubling the size of the 
search space, i.e. by 
doubling the length of 
one sequence, should 
result in approximately 
twice as many random 
high-scoring alignments.

Doubling the length of 
both sequence should 
yield about four times 
as many random high-
scoring alignments.

In other words, in the 

limit of large - and ., 
/(0,-, .) 	∝ 	-..



The Number of Random Alignments with Score ≥ 0
Should Decrease Exponentially with 0.

Consider a series of coin flips:     HHHTTHTTHTTTTTHHHTH . . . .

The probability that it begins with a run of ≥ ℎ heads is (½)5	= 		  6(78 �)5.

A substitution matrix with scores +1 along the main diagonal, and scores 
−∞ off the main diagonal, yields as its high-scoring alignments runs of 
exact matches.  If the probability of a match is 	, then the probability that, 
starting at a particular position in each sequence, there are ≥ ℎ matches is 

	5 =	 
6(78	

<
=
)	5

. 

Given an arbitrary scoring system, and for local alignments starting at an 
arbitrary position in each of two sequence, the probability that the highest 
scoring score is ≥ 0 should decrease exponentially with 0.

This can be understood to imply that, for some positive parameter >, 

/ 0,-, . 	∝ 		  6?@.



The Expected Number of High-Scoring Alignments

From the comparison of two random sequences of lengths - and ., the 
expected number of distinct local alignments with raw score at least 0 is 
approximately

/ = A-.	 6+@
where A is a calculable positive parameter which, like λ, is dependent on   
the substitution matrix and background letter frequencies.  This is called    
the E-value associated with the score 0.

The number of such high-scoring alignments is Poisson distributed, with 
expected value /, so the probability of finding 0 alignments with score ≥ 0 is 
 6B.  Thus the probability of finding at least one alignment with score ≥ 0 is

	 = 1 −  6B .

This is called the p-value associated with 0.  When / ≤ 0.1, 	 ≈ /.

Karlin, S. & Altschul, S.F. (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268.

Dembo, A., Karlin, S. & Zeitouni, O. (1994) Ann. Prob. 22:2022-2039.



Normalized Scores

To know the E-value associated with a score, one needs to know the relevant 

statistical parameters λ and A.  However, these parameters may be folded 

into the score using the equation

0( 	= 	 (λ0 − lnA)	/	ln 2
to yield a normalized score 0′, expressed in bits.  When this is done, the 

formula for the E-value reduces to the extremely simple

/	 = 		G	/	2@΄
.

Example:  Comparing a protein sequence of length 250 residues to a database 

of length one billion residues, how many local alignments with normalized 

score	≥ 35 bits can one expect to find by chance?   The search space size is 

approximately 2K × 2M� = 2MK, so / ≈ 2MK/	2MN = 2M = 8.  The number of 

alignments with score ≥ 45 bits one can expect to find by chance is 0.008.



Sidelight: The Extreme Value Distribution

Almost all the relevant statistics for local alignment scores can be understood in terms 
of /-values.  However, sometimes people are interested instead in the distribution of 
optimal scores from the comparison of two random sequences.

Analysis of the 	-values described above shows that the distribution of these scores 
follows an extreme value distribution (e.v.d.).  Just as the sum of a large number of 
independent random variables tends to follow a normal distribution, so the maximum
of a large number of independent random variables tends to follow an e.v.d.

For optimal local alignment scores, the scale parameter of the e.v.d. is equivalent to 

the statistical parameter λ discussed previously.  The characteristic value P is the score 

whose /-value is 1, and is given by P = (lnA-.)/Q.

Like the normal distribution, the e.v.d. has 

two parameters which describe its offset and 

spread.  However, it is easiest to describe an 

e.v.d. not by its mean and standard deviation 

but rather by its “characteristic value” P, and 

“scale” λ.  In brief, the probability density 

function of an e.v.d. is given by                  

exp	[−λ � − P −  6V "6W ].  A graph of the 

density of the standard e.v.d., with P = 0 and 

λ = 1, is shown here.



Gap Costs for Local Alignment

Our statistical theory is provably valid only for local alignments without 
gaps.  However, although no formal proof is available, random simulation 
suggests the theory remains valid when gaps are allowed, with sufficiently 
large gap costs.

In this case, no analytic formulas for the statistical parameters λ and A are 
available, but these parameters may be estimated by random simulation. 

Here, 10,000 pairs of “random” 

protein sequences, each of length 

1000, are compared using the 

BLOSUM-62 substitution scores, 

in conjunction with gap scores of 

− 11 − Y for a gap of length Y.   

A histogram of the optimal local 

alignment scores from all 

comparisons is shown, as is the 

maximum-likelihood extreme 

value distribution fit to these 

scores.  The estimated statistical 

parameters are λ ≈ 0.27 and 

A ≈ 0.04.



Local Alignment Substitution Matrices 

Are Log-Odds Matrices

The scores of any local substitution matrix can be written in the form:

�
,� = log
�
,�
	
	�

where the �
,� are target frequencies for the aligned amino acid pairs.

Karlin, S. & Altschul, S.F. (1990) “Methods for assessing the statistical significance of molecular 

sequence features by using general scoring schemes.” Proc. Natl. Acad. Sci. USA 87:2264-2268.

Altschul, S.F. (1991) “Amino acid substitution matrices from an information theoretic perspective.” 

J. Mol. Biol. 219:555-565.

Question:  What is the optimal way to choose these target frequencies?



A Schematic Database Search
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No.

0′
logGNoise:



Optimal Target Frequencies

If the aligned pairs of amino acids within the set of 

true alignments occur with average frequencies �
,�, 

then the normalized scores of these alignments will 

tend to be maximized by substitution scores that 

have the �
,� as target frequencies.

Altschul, S.F. (1991) J. Mol. Biol. 219:555-565.

Karlin, S. & Altschul, S.F. (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268.

Selecting an optimal substitution matrix reduces to 

estimating the �
,� that characterize true alignments.



Alignments of Human Beta-Globin to Other Globins

Human beta-globin               VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGN
------------------------------- --LTPEE   VT LWGKVNV  VGGEALGRLLVVYPWTQRFFESFGDLS PDA MGN 
Ring-tailed lemur beta-globin   TFLTPEENGHVTSLWGKVNVEKVGGEALGRLLVVYPWTQRFFESFGDLSSPDA MGN 
-----------------------------------------------------------------------------------------

PKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 
PKVKAHGKKVL AFS GL HLDNLKGTFA LSELHC  LHVDPENF LLGNVLV VLAHHFG  F P  QAA QKVV GVANALAHKYH 
PKVKAHGKKVLSAFSEGLHHLDNLKGTFAQLSELHCVALHVDPENFKLLGNVLVIVLAHHFGNDFSPQTQAAFQKVVIGVANALAHKYH 

Human beta-globin              VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNP 
-------------------------------V  T  E SA   LWGK N DE G  AL R L VYPWTQR F  FG LS P A MGNP  
Goldfish beta-globin           VEWTDAERSAIIGLWGKLNPDELGPQALARCLIVYPWTQRYFATFGNLSSPAAIMGNP 
-----------------------------------------------------------------------------------------

KVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG-KEFTPPVQAAYQKVVAGVANALAHKYH 
KV AHG  V G         DN K T A LS  H  KLHVDP NFRLL        A  FG   F   VQ A QK    V  AL   YH 
KVAAHGRTVMGGLERAIKNMDNIKATYAPLSVMHSEKLHVDPDNFRLLADCITVCAAMKFGPSGFNADVQEAWQKFLSVVVSALCRQYH

Human beta-globin VHLTPEEKSAVTALW----GKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKA 
-------------------------L       V   W    G  N   VG E     L         F  F S        P V  
Bloodworm globin IV    MGLSAAQRQVVASTWKDIAGSDNGAGVGKECFTKFLSAHHDIAAVF-GFSGAS-------DPGVAD 
-----------------------------------------------------------------------------------------
HGKKVLGAFSDGLAHL-DNLKGTFATLSELHCDK----LHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 
–G KVL    D   HL D  K            K H   E F  LG  L     H  G   T     A     A AL      
LGAKVLAQIGVAVSHLGDEGKMVAEMKAVGVRHKGYGYKHIKAEYFEPLGASLLSAMEHRIGGKMTAAAKDAWAAAYADISGALISGLQ

Human beta-globin           VHLTPEEKSAVTALWG--KVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK 
----------------------------V  T      V       K N            L   P     F        P     NPK 
Soybean leghemoglobin VAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFLANGVDPT----NPK 
-----------------------------------------------------------------------------------------
VKAHGKKVLGAFSDGLAHLDNLKGTFA--TLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 
- H  K      D    L       A   L   H  K   DP  F      L        G         A        A A
LTGHAEKLFALVRDSAGQLKASGTVVADAALGSVHAQKAVTDPQ-FVVVKEALLKTIKAAVGDKWSDELSREWEVAYDELAAAIKKA--



The PAM Model of Protein Evolution:  A Summary

A Markov model of protein evolution:  during a given period of time, amino acid � has the 
probability 	
→� of mutating into amino acid .

“1 PAM” of evolution corresponds to a single substitution, on average, per 100 amino acids.

The substitution probabilities 	
→� corresponding to 1 PAM of evolution are derived from the 
analysis of a large number of accurately aligned, homologous proteins that are ≥ 85% identical.  
By construction, 	
	
→� = 	�	�→
, although there is no biological reason this need be the case.

Given the 	
→� for 1 PAM, one may infer by matrix multiplication the 	
→� for any PAM distance, 
and therefore the probability �
,� = 	
	
→� of amino acid � corresponding to amino acid  in 
accurately aligned, homologous proteins diverged by this amount of evolution.

The PAM score for aligning amino acids � and  is �
,� = log
��,�
����

= log
��→�

��
.  By the construction of 

the asymmetric 	
→�, the target frequencies �
,� and scores �
,� are symmetric.

The amino acid at a given position may mutate multiple times, and perhaps return to the original 
residue.  Thus 100 PAMs actually corresponds to proteins that are about 43% identical, while 250 
PAMs corresponds to proteins that are about 20% identical.

There is no uniform scale relating PAM distance to evolutionary time, because different protein 
families can evolve at greatly differing rates.

Dayhoff, M.O., Schwartz, R.M. & Orcutt, B.C. (1978) “A model of evolutionary change in proteins.” In Atlas of Protein 

Sequence and Structure, vol. 5, suppl. 3, M.O. Dayhoff (ed.), pp. 345-352, Natl. Biomed. Res. Found., Washington, DC.



The BLOSUM Substitution Matrices

One criticism of the PAM matrices is that their extrapolation of substitution probabilities 
to distantly related proteins may be inaccurate.

In 1992, the Henikoffs proposed mitigating this problem by estimating the target 
frequencies �
,� directly from alignments of distantly related proteins.

A challenge for this approach is obtaining accurate alignments.

The Henikoffs considered only conserved “blocks” from alignments involving multiple 
protein sequences.  The additional information available from multiple related proteins 
permits the accurate alignment even of sequences that are greatly diverged.

Varying degrees of divergence are dealt with by clustering sequences that are more 
than a given percentage identical, and counting substitutions only between distinct 
clusters, not within them.  The widely-used BLOSUM-62 matrix clusters sequences that 
are ≥ 62% identical, and is roughly equivalent to the PAM-180 matrix.

Somewhat confusingly, the numbers for the PAM and BLOSUM matrices run in opposite 
directions.  Specifically, low-number PAM matrices but high-number BLOSUM matrices 
are tailored for closely related proteins.

Henikoff, S. & Henikoff, J.G. (1992) “Amino acid substitution matrices 

from protein blocks.” Proc. Natl. Acad. Sci. USA 89:10915-10919.



Relative Entropy: The Expected Per-Position Alignment 

Score for Related Sequences

Consider an accurate alignment of two related sequences that are diverged by a known 

amount, so that the appropriate target frequencies and substitution scores are also known.

One may ask the question:  What is the expected substitution score per position?

It is easy to write down a formula for this quantity:

\ = ∑ �
,� �
,� = ∑ �
,�
,� log
��,�
����


,� .

If the scores �
,� are expressed in bits, then \ too has the unit of bits.

\ is a well-known quantity from information theory, called the relative entropy of the 

probability distributions �
,� and 	
	�, but in the present context it has the simple 

interpretation given above.

It is possible to show that \ must always be positive, in contrast to the expected per-

position alignment score for unrelated sequences, which we require to be negative.

Altschul, S.F. (1991) J. Mol. Biol. 219:555-565.



Relative Entropy as a Function of PAM Distance

Given the PAM model of protein 

evolution, it is easy to calculate 

the relative entropy of a PAM 

substitution matrix as a function 

of PAM distance; the curve is 

shown here.  The further 

sequences diverge, the less 

information one can expect to 

obtain per position.

If one requires a certain 

alignment score to rise above 

background noise, one can then 

calculate the minimum length 

required, on average, for an 

alignment to achieve this score.  

The graph here shows such 

critical lengths for assumed 

background noise of 30 bits.



Substitution Matrix Efficiency

In general one does not know a priori the evolutionary distance separating 

two sequences, so one has to use a matrix that may not be optimal.  How 

much information is lost by using the wrong matrix?

The graph shows efficiency curves for the PAM-5, PAM-30, PAM-70, PAM-120, 

PAM-180 and PAM-250 matrices.  Each curve has maximum value 1.0 at its 

corresponding PAM distance.

One may define the efficiency of the PAM-� matrix at PAM distance � as:       

∑ �
,�
"�
,�

]

,� ∑ �
,�

"�
,�
"


,�� .



DNA Substitution Scores
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One may extend the PAM model 

to DNA sequences.  Assuming 

uniform nucleotide frequencies 

and uniform substitution rates 

one may derive the PAM scores 

shown here.

One may assume an alternative 

substitution model in which 

transitions (A ↔ G and C ↔ T) are 

more likely than transversions.  

This implies mismatch scores

that depend upon whether the 

mismatch is a transition or a 

transversion.  It also implies 

ungapped relative entropies that 

differ from those shown here.  

The next slide assume such an 

alternative model.

States, D.J. et al. (1991) “Improved sensitivity of nucleic acid database 

searches using application-specific scoring matrices.” Methods 3:66-70.



Protein Comparison vrs. DNA Comparison

For protein-coding DNA sequences, is it better to compare 

the DNA sequences directly, or their encoded proteins?
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It is often said that protein comparisons are more sensitive, but this needs qualification.

DNA sequences contain all 

the amino acid information, 

so how can comparing their 

encoded proteins be more 

sensitive? 

When DNA sequences are 

compared directly, they are 

usually compare base-to-base,       

ignoring the genetic code.  It is 

here that information is lost.

Even then, protein comparison 

is more sensitive only at greater 

than 50 PAMs.  However, by 

150 PAMS, where many protein 

relationships are easily found, 

naïve DNA comparison misses 

half the available information.

States, D.J. et al. (1991) Methods 3:66-70.


