Assembly Team Doc—Celera Confidential 9 Mar 2000

Overlap Detector Module:
Specification and Design

Art. Delcher
9 March, 2000 Version 1.10

1. Overview

The Overlap Detector Module of the Assembly Subsystem has two main functions:
maintain a database of fragment information, and detect which pairs of fragments contain
matching data. The purpose of the fragment database is to store previously received
fragments, so that their matches with newer fragments can be computed. It also stores
branch-point information computed by the overlapper.

1.1.Basic Terminology

Two sequences, A and B, are said to overlap iff there is a sufficiently long
subsequence of A that matches a subsequence of B to within a specified degree of
similarity. This degree of similarity generally reflects the belief that both subsequences
were obtained from the same position in the genome being sequenced.

Several types of overlaps are possible between fragments A and B:

1. Dovetail Overlap: A complete suffix of A matches a complete prefix of B.

Matching Region

or, vice versa, a suffix of B matches a prefix of A.
2. Containment Overlap: The entirety of B matches a subsequence of A, or vice versa.

Watching Region

3. Branch Overlap: The matching region does not extend to the end of the fragment.
Such fragments should not be combined in the final assembly. The branch point, i.e.,
the boundary between the matching region and the non-matching region, indicates the
boundary of a repeat region in the genome.

a) A single branch consists of 1 matching region and 1 mismatching region.

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 1 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

Watching Region Mismatch Region

) AE
Wateh End Branch Point
b) A multiple branch contains at least two separate matching or mismatching
regions.

Wismatch Region : Watching Region éMismalchRegion

3 3

Branch Point Branch Point

Branch overlaps are not included in the overlaps output by the overlap detector. The
branch points from such overlaps are what is output.
Only information from simple branch overlaps is output by the overlap detector—
multiple branches are ignored.

4. Polymorphic Overlap: An overlap that would be a dovetail or containment overlap
except for a region of mismatch internal to the matching region.

Small
Wism atch
Region

MWatching Region Matching Region

The mismatch also can be an insertion or deletion. Each of the matching regions
must contain a sufficiently good match to qualify as a valid overlap in its own right.
More than one mismatch region is allowed.

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 2 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

2. Input/Output Specifications

2.1.Input

Input to the Overlap Detector Module will be a stream of messages, received from
the Ubiquitous Repeat Detector Module. The messages that the Overlap Module
processes are ScreenedFragMesqg’s (SFG’s). The information in these messages is
stored in the fragment database for later use and for checkpointing purposes. A stripped-
down version without sequence or quality values is output as an OverlapFragMesg.
Other messages are passed along unmodified to the output message stream.

The information in DistanceMesqg’s is also stored in the fragment database before
these messages are passed along.

The response to a ScreenedFragMesg depends on the value of the Action
field.

ScreenedFragMesg: {SFG
record
action: scalar (AS_ADD,AS_DELETE) act: [AD]
eaccession: Fragment_ID
iaccession: IntFrag_ ID acc: (%d, 5d)
variant of action:
AS_ADD:
record
type: scalar (AS_READ,AS_GUIDE) typ: [RG]
source: "description of data source" src:0(%[~\n]0) *
entry_time: time_t etm: %d
clear_rng: Seglnterval clr:%d, 3d
sequence: string (char) seq: (% [\] *,
quality: string (bytes) glt:0(%["\n]
screened: sorted list of ScreenMatch scn:D(<SMA4zand>D)*
end
end
end }

SegInterval: record bgn, end: int end

When the action value is AS_ADD, all other information in the record will be
stored in the Fragment Store. If the action value is AS_DELETE, the corresponding
entry in the Fragment Store will be marked as deleted. The deletion entry will include a
timestamp to indicate when the deletion occurred. In addition, any branch-point
information that was introduced into the Fragment Store by the deleted fragment must be
removed, and output messages that reflect any resulting changes will be generated.

For either AS_ADD or AS_DELETE actions, the message is emitted to the output
stream as an Over lapFragMesg, but without sequence or quality data, to conserve
space.

In addition to being added to the Fragment Store, all incoming fragments will be
checked for overlaps with all other fragments in the Fragment Store. The results will be
sent to the output stream as OverlapMesqg’s and BranchMesg’s described below.

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 3 of 16

Assembly Team Doc—Celera Confidential

2.2.0utput

9 Mar 2000

In addition to updating the Fragment Store, the Overlap Module will output two
types of messages describing matching regions between fragments: OverlapMesg’s

and BranchMesg’s.

2.2.1 Simple Messages

The following is essentially a copy of the corresponding input message, with the

space-consuming sequence and quality information removed.

OverlapFragMesg: {OFG
record
action: scalar (AS_ADD,AS_DELETE) act: [AD]
eaccession: Fragment_ID
iaccession: IntFrag_ ID acc: (%d, %d)
variant of action:
AS_ADD:
record
type: scalar (AS_READ,AS_GUIDE) typ: [RG]
source: "description of data source" src:0(s[~\n]10) *.
entry_time: time_t etm:%d
clear_rng: Seqglnterval clr:%d, %d
screened: sorted list of ScreenMatch scn: O (<SMA-record>1) * .
end
end
end }

2.2.2 Overlap Records

Overlaps will be represented by the following data structure:

OverlapMesg:
record
aifrag: Int_Frag_ID
bifrag: Int_Frag_ID
orientation:
scalar (AS_NORMAL,AS_INNIE,AS_OUTTIE)
overlap_type:
scalar (AS_DOVETAIL,AS_CONTAINMENT,AS_SUPERREPEAT)
a_hang: int
b_hang: int
quality: float
min_offset: int
max_offset: int
polymorph_ct: int

delta:
end

string (int)

{OVL
afr:%d
bfr:%d
ori: [NIO]
olt: [DCS]
ahg:%d
bhg:%d
qua:st
mno: %d
mxo: %d
pct:%d
del:0((%d)*0) *

* The aifragand bifrag values are the unique ID’s of the two fragments whose
overlap is reported in this record.
* The orientation value indicates the direction in which the fragments overlap.

cds/AS/doc/Designs/OVLModule.rtf ver 1.10

Page 4 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

In all cases the A fragment begins at the same position or to the left of the B
fragment. The possibilities are:

* AS_NORMAL — A suffix of A matches a prefix of B.

e AS INNIE — A suffix of A matches a suffix of B€.

* AS_OUTTIE — A prefix of A€ matches a prefix of B.

Normal:

B L

*» The overlap_type indicates which general type of overlap this is. Dovetail
and containment overlaps are the normal cases. The distinction between them is
redundant—it can be inferred from orientation, a_hang, b_hang
(described below), and the fragment lengths.

The type AS_SUPERREPEAT is a special case that indicates that A contains a
subregion that occurs too frequently in the genome for reporting all overlaps. In
this case, the bifrag value, if present, would indicate the longest such overlap
detected in this batch of overlap comparisons.

[Note to self: Need to be careful that the reported overlap is in fact one of the
microsat-repeats. There may be a longer overlap, extending beyond the
superrepeat region, that should be reported as a normal overlap.]

If no bifrag value is given for a superrepeat, then the orientation must be
either AS_ NORMAL or AS_OUTTIE and the general type is automatically
AS_DOVETAIL. At this point it is not settled how these will be detected. It
could be done purely by k-mer frequency; by counting the number of matches to
other fragments and stopping after some threshold is exceeded; or by the UR
detector, in which case it might be ignored by the Overlap Detector.

* a_hang and b_hang indicate where the start and end of the alignment of the
matching region of fragment B is relative to fragment A. a_hang is always non-
negative, and is the number of positions (bases) that the A fragment extends out in
front of the leftmost base (the first base in the clear region) in B (or B).
Similarly, b_hang is the number of bases that the B fragment extends out past
the end of the A fragment. For a dovetail overlap the value of b_hang will be

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 5 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

positive. For a containment overlap, b_hang will be non-positive.

* deltaisaO-terminated sequence of integers that describe the remainder of the
alignment between the matching regions in A and B. Specifically, these integers
indicate the indel positions in the alignment relative to the previous indel. A
negative value indicates a missing entry in fragment A; a positive value denotes a
missing base in B. For example, the following alignment:

A: cgt-—-tattacgtcg
B: cgtgatat--cgacg

would be expressed by the delta sequence:

-4, -1, +4, +1, O
The absolute value of each delta value represents the number of positions forward
from the current position that the next indel occurs.
The initial delta position is the start of the overlap region. E.g., in the following
overlap alignment:

A: cattagcggtatcgacgacgacga ...
B: cgct-tcgacgacgacga ...

a_hang is 6 and the first delta value is 5.

Delta values will be restricted to range from —128 to 127 so that they may be

stored in a single byte. Two special values will be used:

¢ -127 will be used when the offset to the next indel is more than 126 bases.
The effect of the -127 is to shift the alignment position forward by 126 bases.
Thus, an alignment that consists of a single insert in B at position 300 would
be expressed by the delta sequence:

~127, -127, +48, 0

¢ -128 will be used for alignments with gaps that appear to represent small
polymorphisms. This value will indicate the presence of a larger-than-usual
gap. The signed integer following the -128 will denote the length of that gap.
Note that this value is in addition to the indel represented by the integer
preceding the -128. For example, the following alignment:

A: cggt———————- aggaacg ...
B: cgctacgacgacgacga—-cg ...
would be expressed by the delta sequence:
-5, -128, -8, +5, 0
and similarly, the alignment:

A: cggtacgacgacgacgaacg ...
B: cgct————————- acg--cg ...

could be expressed by the delta sequence:
+5, -128, +8, +4, +1, O
Note that the sign of the value after the —128 will always be the same as that of
the value in front of the —128.
The rules used to determine exactly what constitutes a “small polymorphism”

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 6 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

are discussed further below. It is likely that they will evolve with experience.
Note that small polymorphisms that are not indels have no special delta code.
Nonetheless, they are included in the value of polymorph_ct described
below.

* quality is an indication of how likely it is that the matching regions in fact
represent samples from identical regions of the genome. Details are yet to be
determined. The alternative hypothesis is that the matching regions were sampled
from different regions that were, say, 95% similar. In the current version of the
program, this value is simply the error fraction in the overlap region, so that a
small value indicates a close (i.e., high-quality) match.

e min_ offset and max_offset indicate whether there are alternative
alignments that result from the matching region being (nearly) periodic.
min_offset is the smallest possible value that the a_hang field could have
and still produce a valid overlap with fragment B. Similarly, max_offset is the
largest value of a_hang that could represent a valid alignment. If there are no
alternative overlaps, then the values of a_hang, min_offset, and
max_offset will all be the same.

For periodic dovetail overlaps that contain at least two full periods of the overlap
sequence, the value of max_of fset will be greater than the length of (the clear
region of) fragment A. If there are not two full periods in the overlap, then
max_offset will only report the alternative alignment if that alignment meets
the usual criteria for an overlap.

For containment overlaps in which fragment B is completely periodic, the values
of min_offset and max_offset will indicate the leftmost and rightmost
alignments of B within A, respectively.

If fragments A and B are both completely periodic (and either of them contains
two full periods), min_offset will have a negative value and max_offset
will be greater than the length of (the clear region of) fragment A.

The alignment reported by the a_hang field is the one with the best quality
value. In case of ties, the smallest positive a_hang value (representing the
maximum overlap) will be used.

Assume, for example, that in the following case the alignment shown is the best
possible based on quality values, and that its of £ set value is 300:

A .. aaaacgtcgtcgtcgtcgtcgtcgtcgtcegt
B: cgtcgtcgccgtcgtcgtegtegtegtegtegtaacgaa ...

Then the value of min_offset would be 297, reflecting the maximum overlap,
and the value of max_offset would be 324, reflecting that the overlap region is
purely periodic.

The shift values will only be computed if the overlap region contains at least 2
complete copies of the repeat or alternative exact k-mer matches.

Note that the match region of branch overlaps also can be periodic. In such cases
the branch points and corresponding match ends will be reported at their extremal

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 7 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

223

224

positions.
A ... agtaggacgtcgtcgtcgtcgtcgtcgtcgtaaagggttt ...
B: ... gcccaagcgtcgtcgtcgtcecgtegtegttacgaa ...

The value of polymorph_ct indicates the number of (presumed) small
polymorphisms contained in this alignment. These are relatively short mismatch
regions that are long enough to cause failure of the standard match-quality test,
but are bounded by regions that strongly suggest the match is not random. They
also can be viewed as small gaps between two branch overlaps. Most commonly,
(perhaps exclusively) they should be extra copies of microsatellite repeats.

Note that it is possible to output more than one overlap record for the same pair of
fragments, as in the following case:

Since these overlaps are not caused by periodicity, they are not indicated by values
ofmin_offset ormax_offset. For a given pair of fragments, there will be
no more than 2 overlaps reported.

Immutable Facts

a_hang will always be non-negative.

overlap_type is AS_CONTAINMENT iff b_hang < 0.

If overlap_type is AS_DOVETAIL thena_hang > 0 and

b_hang > 0.

Overlaps never refer to the reverse-complement of both fragments.

If a_hang = b_hang = 0 then ia_frag < ib_frag (internal ID’s).
Not yet implemented.

For both AS_TINNIE and AS_OUTTIE dovetail overlaps, ia_frag <
ib_frag (internal ID’s). Not yet implemented.

All internal fragment ID’s are positive integers less than 23!

Branch-Point Records [Obsolete]

Branch points are no longer output by the overlapper.
Branch points will be output using the following simple data structure:

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 8 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

BranchMesg: {BRC
record
action: scalar (AS_ADD,AS_DELETE,AS_UPDATE) act: [ADU]
ifrag: Int_Frag_ID frg:%d
pre_br: int pbr:%d
suf_br: int sbr:%d
pre_end: int pen:%d
suf_end: int sen:%d
end }

action indicates whether this is:

1. The first report of branch-point information for this fragment (AS_ADD).

2. The removal of all previously reported branch information for this fragment
(AS_DELETE). This should occur only because of the deletion of the (one
and only fragment) that induced the branch point on this fragment. In this
case the values of pre_br, suf_br, pre_end,and suf_end all will be
zero.

3. A change in previously reported branch-point information for this fragment
(AS_UPDATE). This would commonly occur when a new fragment implied a
larger repeat region on this fragment. All 4 fields are included in the message,
even if only one value has changed.

Suppose fragment a is the only fragment that induces a prefix branch point on
fragment b, but that other fragments induce suffix branch points on b. If a is
deleted, then an AS_UPDATE message will be sent for fragment b with zeroes
in the pre_br and pre_end fields is deleted, but the current extremal
values in the sub_br and suf_end fields. The symmetric case applies when
the last suffix branch is deleted, but prefix branches remain.

See below for a further discussion of what branch-point information will be

maintained in the Fragment Store.

ifragis the internal ID number of the fragment containing the branch point

information.

pre_br is the location in this fragment at which the earliest (i.e., leftmost or

closest to the 5’ end) prefix branch point detected so far has occurred. A prefix

branch point is one that indicates a boundary between differing sequence on its 5’

side and matching sequence on its 3’ side. This position is relative to the fragment

in which it is reported. The orientation of the other fragment does not matter.

Thus, in the following case (where arrows point toward the 3’ end of the

sequence):

the indicated branch point is a prefix branch point in both A and in B, whereas in
the following case:

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 9 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

the indicated branch is a prefix branch point in A and a suffix branch point (see
below) in B.

The specific location value is determined by maximizing a transformed distance
function along the path of the best alignment, as described below. It will be the
position between the “last” base that matches and the next base, which must be a
mismatch.

* suf-br is the location in this fragment at which the latest (i.e., rightmost or
closest to the 3’ end) suffix branch point detected so far has occurred. A suffix
branch point is one that indicates a boundary between matching sequence on its
5’ side and differing sequence on its 3’ side. The following:

g

is a suffix branch point in both A and B.
* pre_end is the maximum position (i.e., closest to the 3” end) to which the end of
the matching region of any prefix branch overlap detected so far extends.

))

Prefix Branch Point Prefix Mateh End
Note that the values of pre_end and pre_br need not come from the same
branch overlap. Each is the separate extremal value from the set of all prefix
branch overlaps.

* suf_end is the minimum position (i.e., closest to the 5’ end) to which the end of
the matching region of any suffix branch overlap detected so far extends. As
before, suff_end and suf_br need not come from the same branch overlap.

* All reported values are relative to the clear range of the fragment.

3. Algorithm Specifications

Assumption: All overlap calculations will be done using only the clear region of
fragments.

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 10 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

3.1.Detecting Match Regions

Definition: An overlap between two fragments will consist of subsequences of the
fragments, both at least MIN_OLAP_LEN bases long, between which the number of
errors (character inserts, deletes and mismatches) is less than
MAX_ERROR_PERCENT of the shorter length of the two subsequences.

Note that this does not use quality values. The quality values are used to determine
the best alignment. Overlaps will be found by finding exact matches of length k, and then
checking whether they can be extended to the necessary length within the designated
error bound. The value of k will constrain the values of MIN_OLAP_LEN and
MAX_ERROR_PERCENT. A value of k = 13 supports MIN_OLAP_LEN =40 and
MAX_ERROR_PERCENT = 0.05 under this definition. This value of k is probably too
small for efficient computation. Using a larger value of k may result in some overlaps
being missed.

The algorithm will process fragments in batches. Each batch will consist of two
streams of fragments: New and Old. The output of the algorithm will be a representation
of all overlaps between any fragment in New, and a fragment (or its reverse complement)
from Old. Note that reverse-complements of fragments from New are not considered, and
that no attempt is made to find overlaps between 2 fragments in New, or between 2
fragments in Old. There is no requirement that New and Old be different streams,
however. If they are the same stream, then all overlaps between different fragments in
that stream will be produced. No overlap will be reported between a fragment and itself
(either forward or reverse-complement).

Note that overlaps will be checked between fragments and their reverse-complement
clone mates as a check against short clones. Overlaps also will be checked between each
fragment and its forward clone mate.

The algorithm begins by reading all the fragments from New and creating an index of
all the k-mers contained in them. The current implementation of the index is a hash table.
Then fragments are read from Old, and processed one at a time. Let u be the fragment
from Old being processed. Each k-mer in u is searched for in the index, and all matches
with fragments from New are recorded. Matches are partitioned into groups representing
identical matches longer than &, since an exact match of length m > k consists of 1 + m —
k overlapping k-mer matches. Each group is processed separately.

When processing a batch of fragments against itself, to prevent duplicate reporting of
overlaps, only overlaps between fragments where the New fragment ID is greater than the
Old fragment ID will be considered.

From the resulting maximal, exact matches the longest region R is selected. Starting
at R, two edit-distance calculations are performed: one to the left and one to the right to
determine how far the match region can be extended within the MAX_ERROR_PERCENT
error constraint. If the resulting match is sufficiently long and extends to the end of at
least one of the fragments, it is analyzed to determine its type and alignment. If itis a
complete overlap, it is output. If it is a branch overlap, its information is used to update
the branch-point information for each of the fragments.

The other groups representing maximal exact matches between u and v are then
analyzed. If they are contained within a previous match, they are ignored. Otherwise,

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 11 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

they are processed in the same fashion. Note that it is possible to report more than one
overlap between a single pair of fragments u and v, as mentioned earlier.

3.2.Extending the Exact-Match Region

To extend the exact-match region R above, a simple edit-distance calculation (I use
the O (Errors % Length) algorithm of Ukkonnen/Myers/Landau-Vishkin with a “band”
eliminating any alignments that are unlikely to extend to the end) can be done to compute
an optimal alignment and determine how far the match can be extended without
exceeding the MAX_ERROR_PERCENT error constraint. If the match extends to the end
in both directions, the alignment and quality are computed and the overlap is output.

If the match almost makes it to the end, a few bases of fudging are allowed. The
maximum number of such bases is OLAP__SLUSH.

If the match does not extend to the end of either fragment, then the branch point
needs to be determined. We can do this by scoring the above alignment using a
transformed distance measure &’. The peak score along the alignment using this distance
will mark the end of the overlap match region.

Specifically, for two characters a and b we define & (a, b) = x if a = b and
O’ (a, b) =y if a# b. We wish to choose the values of x and y so that along the alignment
path, if the sequences match at the expected rate of, say, 4%, then the slope of the graph
of distance versus path length is +1. And if the sequences are random, which corresponds
to a match rate of, say, 66%, then the slope of distance versus path length is —1. [Using
these numbers I get x = 1.08 and y = -4.72.] The end of the match region, i.e., the branch
point, will be the position along the alignment path at which the cumulative &’ score is
maximum.

A branch overlap is discarded unless the length of the non-matching part of both
fragments is sufficiently long (MIN_BRANCH_END_DIST).

3.3.Recording and Reporting Branch Points [Obsolete]

The overlapper no longer outputs branch-point information.

We expect huge numbers of branch overlaps because of the frequency of repeat
regions in genomic data. It is therefore impractical to report each one of these as a branch
point. Instead we propose to maintain for each fragment just information about the
extremal branch points. Specifically, we shall record the leftmost prefix branch point, the
rightmost suffix branch point, the rightmost prefix match end, and the leftmost suffix
match end.

Because of sequencing error, the exact position of each branch point is uncertain.
Therefore we shall keep with each branch point a small array of counters representing a
histogram of the number of times another fragment induced a branch point at or near the
extremal value. These counters can be regarded as “votes” by other fragments as to
where the branch point should be.

Thus the Branch_Info structure we keep for each fragment will consist of a
separate Position and a Votes array pair for the leftmost prefix branch point and for
the rightmost suffix branch point. Position will be the coordinate in the sequence
where the extreme branch occurred, calculated as described in the previous subsection.
Votes [1i] will be the number of other fragments that voted for the branch point at

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 12 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

Position + 1 (for prefix branch points) or Position - i (for suffix branch
points).

The branch-point information stored with each fragment will be updated with each
batch of fragments processed by the overlapper. From a single batch, at most one branch-
point message per fragment can be emitted. If the position of the branch point is
unchanged, no message is emitted, even if the Votes values have changed.

[Note to self: Need to worry about synchronization issues in updating Votes when
running in parallel.]

Updating the branch information for an additional vote is straightforward. If the new
position is within the extremal recorded, the appropriate vote count is incremented (if it
exists in the array—it may be off the end); otherwise, the extreme position is modified, its
vote set to one, the vote counters shifted the appropriate amount, and a branch update
message emitted.

The match-end values are simply the max (for prefix) and min (for suffix) values
encountered so far.

When a fragment is deleted, its overlaps with all other fragments will be recomputed,
and the appropriate branch votes decremented. If the vote count at the extremal position
goes to zero there are 2 cases: If another vote count is non-zero, the votes can be shifted
and a branch update message emitted. If all vote counts are zero, then overlaps for this
fragment will need to be re-computed to re-determine its branch points if any. If it has
none, then the branch delete message is emitted. This is the only case in which the
branch delete message is sent. The branch points on a deleted fragment itself are
assumed to be deleted without sending a redundant message to that effect.

The effect of a delete fragment on match ends is yet to be determined. It could be
recomputed, as described above. Or in the case where there are sufficient votes for the
branch-point, it may simply be kept even though it might be erroneous.

The branch-point information conveys an estimate on what regions within a fragment
have evidence of being repeat regions in the genome. Specifically, the union of intervals
[pre_br, pre_end] U [suf_end, suf_br] is presumed to be in repeats. Note that
this overestimates what is repeats in the case of the following overlaps:

S

where the central region is assumed to be repeat, even though it very well may be unique.

3.4.Analyzing the Match Region

3.4.1 Current Status

The overlap currently reported is the one with the minimum error rate, which is
defined as the number of errors divided by the shorter match region of the two fragments.
(Note that because of inserts and deletes, the length of the portion of the fragment that
aligns with the other fragment may be different in the two fragments. It is also possible
that the best match might not be found in the presence of microsatellite repeats with small

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 13 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

variation.) Quality values are not used in counting errors.

Overlaps are also checked to see if they contain a subregion with a disproportionately
high incidence of mismatches. This check is implemented by sliding a fixed-length
window along the alignment of the overlap region and counting the number of errors,
taking into account quality values as follows: Let g be the lower quality value of two
aligned, mismatching bases (or the quality value of an inserted or deleted base). If g is
less than a threshold value 7, then we count it as g/T of an error; otherwise, it counts as a
full error. If the error count exceeds some specified limit in any window of length W in
the overlap region, the overlap is rejected and not output. Currently, the overlap module is
set to reject any overlap with either 8 or more errors in a window of length 50, or 12 or
more errors in a window of length 100.

3.4.2 Other Possibilities

The alignment reported will be the one with maximum likelihood based on quality
values. Exactly what this means is yet to be determined. One possibility is to create a
distance function that is the negative log of the probability that a pair of characters
matches, based on their quality values. The best alignment is the one that minimizes the
sum of these distances over the alignment.

The definition of the overall quality-of-match value is not yet determined. The
preceding distance measurement could be used, normalized by dividing by the length of
the match region to obtain an average quality-per-base value. An alternative is to develop
a maximum likelihood score to specifically determine if the match is more likely to be
from sequencing error or from a chance match with a similar region. Such a score could
be derived empirically from simulations.

Detecting periodicities in the exact-match portions of the overlap match region is
easy when there are multiple matches of the k-mers. For short matching regions
additional analysis may be necessary. This can be based on periodicities within the k-
mers that could be built into the k-mer index.

Long, inexact periodicities that contain neither a separate exact k-mer match nor a
periodic k-mer are harder to detect. [I think they are possible, but they should be
exceedingly rare. I don’t know how much effort should be expended to try to detect them
or what the cost might be.]

3.5.Finding SuperRepeats

SuperRepeats are overlap match regions that occur too frequently to be worth
reporting. Because the old fragments are processed in batches, it’s possible [likely, I
think] that such regions may not occur too frequently within a given batch, but
collectively in all the batches they may be too frequent. In that case, the post-processing
step that adds the output of the overlap detector to the overlap database could detect the
superabundance and make a special entry in the overlap database. Note that this implies
changes in the overlap database that might modify the overlap graph and/or unitig graph.
The same phenomenon occurs if a SuperRepeat is detected in a single batch that had not
been detected in prior batches.

The ubiquitous-repeat tagger (URT) that processes fragments before they reach the

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 14 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

overlap module will detect regions within fragments that should not be included in the k-
mer index from which overlaps are computed. No k-mer more than half contained in such
a region will be put in the k-mer hash table.

In addition, the hash table will record the number of hits against it from Old
fragments. (Sub)sequences with an excessive number of such hits can be flagged and/or
fed back to the URT.

Another possibility is to group the old data into batches so that SuperRepeats occur
together. Such a partitioning may be hard given fragments that contain different
SuperRepeats.

3.6.Finding Small Polymorphisms

Small polymorphisms will be detected when there are two or more regions that meet
the length and match-quality criteria, but which do not extend to meet each other.
Whether additional criteria should be included is not clear. Certainly a region that
represents 1 or more extra copies of a small repeat will be included if it is not too long.
Polymorphisms that are not variations in the number of small tandem repeats will be
allowed only if their length is not more than OLAP_SLUSH.

Non-matching regions at the end of either fragment will not be reported as
polymorphic overlaps—they will be reported as branch points.

3.7.File Aspects

Fragments are processed in batches. The size of the batch is determined by the
number of fragments that can be indexed in memory. Other than finding SuperRepeats,
maybe, the grouping into batches is arbitrary.

The Overlap Index is maintained by the modules that receive the outputs of the
Overlap Detector Module.

4. LSF Overlapper

The LSF version of the overlapper is designed to handle very large overlap tasks. It
works by first invoking a script-generating program that analyzes the size of the fragment
store and the size of the new fragments to be added to it. It then generates a script of
LSF commands to launch a series of overlapper jobs that can be run anywhere on the
compute farm. These jobs collectively do the entire overlap computation. As a final step
their output files can be concatenated to be passed along to the unitigger module.

The general strategy will be:

1. Insert the new fragments into the fragstore. This will allow all subsequent jobs to
read the store simultaneously without any special synchronization. It also permits
random access to any range of fragments.

2. Submit a collection of jobs with parameters specifying two ranges of fragments: the
fragments to put into the hash table (analogous to “new” fragments in a normal run);
and the fragments to stream against the hash table (analogous to “old” fragments).
These jobs are completely independent and each writes its own .ovl file.

3. When all the jobs in the preceding step have completed, their output files can be
concatenated.

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 15 of 16

Assembly Team Doc—Celera Confidential 9 Mar 2000

AUTHORS

Art. Delcher:

Revised:

Revised:

Revised:

Revised:

Revised:

Revised:

8 Jan 99

Added Sections 2—7 and updated message formats.

29 Jan 99

Moved sections to
/doc/Assembler/Programs/OVLManual.rtf, made
changes caused by the gatekeeper, changed branch-point message
and added description of maintaining branch-point info.

25 Feb 99

Revised branch-point information, and other small revisions to
reflect current overlapper.

1 Mar 99

Fixed 3-codes in branch message.

30 Nov 99

Marked branch-point sections as obsolete and added section on
LSF overlapper.

8 Feb 2000

Small change to LSF section.

cds/AS/doc/Designs/OVLModule.rtf ver 1.10 Page 16 of 16

	9 March, 2000 Version 1.10
	1.1.Basic Terminology
	2.1.Input
	2.2.Output
	2.2.1Simple Messages
	2.2.2Overlap Records
	2.2.3Immutable Facts
	2.2.4Branch-Point Records [Obsolete]

	3.1.Detecting Match Regions
	3.2.Extending the Exact-Match Region
	3.3.Recording and Reporting Branch Points [Obsolete]
	3.4.Analyzing the Match Region
	3.4.1Current Status
	3.4.2Other Possibilities

	3.5.Finding SuperRepeats
	3.6.Finding Small Polymorphisms
	3.7.File Aspects
	AUTHORS

