Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

Ubiquitous Repeat Tagger and Contaminant Detector Module
Hui-Hsien Chou and lan Dew
1. Overview

The purpose of the Ubiquitous Repeat Tagger and Contaminant Detector module (AS_URT) is to
identify and tag portions of fragments that contain known contaminant and repeat sequences.
Fragments containing contaminant sequences must be removed from the processing stream to
avoid corrupting intermediate and final assembly results. Regions of fragments containing repeats
must be tagged to simplify the jobs and reduce the processing times of the overlapper and unitig
graph builder. AS_URT will perform contaminant detection as part of the pre-assembly process,
under the control of the Data Management System (DMS), and repeat tagging as part of the
assembly process.

2. Requirements
A Inputs

Two kinds of input data will be processed by the AS_URT module. These will be fragment
messages (IFGs) — specifically reads - and screen item messages (ISNs). A limited set of other
message types (IDTs, ILKs, IJNs, and RPTs) may be present in the input stream. The
specification for these message types is located in the prototyping 1/0 conventions document.
Messages other than IFGs and ISNs will be passed through the AS_URT module with no
processing performed on them. Messages will be delivered in the form of files, and one file will be
processed per execution of the AS_URT module.

A large (approximately 10Mbp) set of ISN messages is anticipated initially, followed by a steady
stream of approximately 200K IFG messages, each about 500bp long, per day. However, new
ISN messages may be delivered at any point during a sequencing project, so the AS_URT
module must handle all possible mixtures of IFG and ISN messages in a single file. The AS_URT
module will create, maintain, and use a screening library that will persist through the duration of a
sequencing project. Since the module will be run separately to detect contaminants and repeats,
a different library will be created and used for each of these two screen item types. (Currently, the
design supports only addition of new screen items. It should support modification and deletion as
well.)

All read data will have approximately the same low error rate. Each screen item will specify a
unique tolerance or variation limit that defines an alignment match. Presumably contaminants will
have low tolerances and repeats will have slightly higher tolerances.

Command line arguments will supply the AS_URT module with names of input and output
filenames.

B. Processing
The AS_URT module will have 12 hours on one EV6 processor to screen 200K IFG messages

against contaminants and repeats in two separate executions. Within this time constraint, as
many contaminants as possible should be detected and as many repeats as possible that would
trigger overlaps in the overlapper should be detected. The overlapper will run with a combined
error threshold of 6%. Minimizing false negatives takes priority over minimizing false positives.

The high-quality clear range of each read will be screened, and all contaminants and repeats

$Revision: 1.1.1.1 $ 1 $Date: 2004/04/14 13:45:15 $

Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

within that region will be tagged. Thus, if more than one repeat are detected in a fragment, all will
be tagged.

C. Outputs
There will be two options for AS_URT outputs. The standard form, used for repeats, consists of

screened fragment messages (SFGs) and screen match messages (SMAs). SFGs are IFGs with
an additional field listing SMAs. Each SMA identifies a match between a fragment and screen
item. All other input message types will be included in the output file without modification. The
alternate form, used for contaminants, consists of a series of return-delimited records of space-
delimited fields, where each record associates a fragment with a matching screen item. Both
forms of output will be written to a file.

3. Design

A. Overview

The screener algorithm consists of several steps to find sufficiently similar sub-sequences
between screen item and fragment sequences. It first creates a data structure containing all k-
mers (k=12 for the Alpha architecture) from a large set of fragment sequences and streams
screen item sequence k-mers against it to find identical k-mer hits. Two methods are used for
streaming screen items against the set of fragment k-mers. The first uses zero neighborhoods
(identical k-mers). The second method uses one neighborhoods (k-mers with zero or one
difference). Screen items are processed one at a time, in forward and reverse directions, one k-
mer at a time. By design, hits are accumulated in position order (offset into fragment sequence)
sorted by Edit Graph diagonal, and sets of hits are considered over an appropriately sized moving
window of contiguous diagonals and localized by appropriately sized block (overlapping fragment
interval). If the aggregate number of matched bases is sufficient within some subset of
diagonals/blocks within a window, a banded local alignment is performed on the fragment/screen
item pair around the hits to determine if the sub-sequences are long and similar enough (a

match). Each screen item specifies the minimum length required, A =240 , and maximum

variation allowed, vO [0’35) , for a match. In addition, there is an assumed sequencing
accuracy, a, currently set to 0.98.

Three computations are critical in determining the effectiveness and speed of this algorithm. First,

0.1

the k-mer size, K, and neighborhood size, nu , must be selected for each screen item

given 9 and its values for Aand V. Next, an array of minimum number of matching k-mer

bases, B , over a subset of diagonals in the window must be determined. Finally, a minimum

local alignment score, y, must be set to determine whether or not a local alignment qualifies as a
match.

The idea is to examine the number of matched bases and the interval within which they occur
over one or more diagonals to determine whether or not to perform a banded local alignment. The

goal is to set values for K and Ps that minimize the probability of performing an alignment due
to random matches. The discussion below stresses selection of the largest value of K . This may
not be the same as minimizing the probability. Still, the mechanics of the system are independent

of the actual values for K and '&.

$Revision: 1.1.1.1 $ 2 $Date: 2004/04/14 13:45:15 $

Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

B. Selecting K _and B thresholds
The maximum number of acceptable base errors, € , over a length A is defined by

e=NU~-@-v)

$Revision: 1.1.1.1 $ 3 $Date: 2004/04/14 13:45:15 $

G{TO 2t e s (e r7)t8)tafa0]2tj22(2sf24)2s|26({2r|28 28 (3031 32 33 [34{35[36[37(38 39 (40

Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

4 |10] 11| CEEONSARRNORES 11 |22| 23 aelos |26 |27 [os oo lao st sl salselssls |57 e s oo

For a given A and € , the largest acceptable value for ~ ° must be small enough to detect all
matching bases when mismatches are spaced evenly over A With even spacing, there will be
£+l hits, and A = € pases will be matched. If the mismatches are either all insertions or all

deletions, the k-mer hits will be distributed over € +1 contiguous diagonals. The value of Ko is

thus
o =dA- g)C
o =
£+1) - 5)
As an example, for A=40 gng £=4 , Ko =17 , and 36 bases are matched (shaded blocks

represent mismatches):

If the mismatches are unevenly distributed, hits will still be found using the same Ko , but fewer
matching bases will be covered, and these will be found over fewer, possibly non-contiguous

diagonals in window of € +1 diagonals. For example, if the left-most mismatch is moved one
base to the right, the second k-mer from the left will be missed:

In this example, assuming all insertions or all deletions, hits will be found over 4 non-contiguous
diagonals in a 5 diagonal window, and a total of 30 bases will be matched. In general, given A ,

€, Ko , and a number of diagonals, i, on which hits are found in a window of € *1 diagonals,
the number of matched bases must be at least:

Bi2A-ek+(K-D@i-1)

Unfortunately, it's not quite so simple. As an example, consider the case where A =40 gng

v=0.03. subsequences may be 5% different. For a 40 base subsequence, 2 differences are

allowed, and (5) yields Ko =12 . For a 41 base subsequence, however, 3 differences are allowed,

and (5) specifies Ko =9 . The former will get all appropriate 40 base matches and miss some 41
base matches. Thus, the minimum length of subsequence at which an additional difference is
allowed must be considered. This is

$Revision: 1.1.1.1 $ 4 $Date: 2004/04/14 13:45:15 $

RN AREAMA RN AN IR R R R A AR AN A A R T R v A A A A AR R A A BRI R LA R R ¢ 40

oo

Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

Combining (5) and (7) leads to

H M ¢ O .
K :minEDA—gD _(a_V)E_
0 EHE+1E £+2

H

From (6) and (8), the following table can be derived for A =40 gng a =.98,

variation errors k-mer num- diag-1 diag-2 diag-3 diag-4 diag-5 diag-6 diag-7 diag-8
diags
\Y € K A 1 2 3 4 5 6 7 8
0.01 2 12 3 16 27 38
0.02 2 12 3 15 26 37
0.03 2 9 3 14 22 30
0.04 3 9 4 15 23 31 37
0.05 3 7 4 15 21 27 33
0.06 4 7 5 16 22 28 34 36
0.07 4 6 5 15 20 25 30 35
0.08 4 6 5 1 16 21 26 31
0.09 5 5 6 16 20 24 28 32 35
0.10 5 5 6 12 16 20 24 28 32
0.1 6 4 7 16 19 22 25 28 31 34
0.12 6 4 7 15 18 21 24 27 30 33
0.13 6 4 7 13 16 19 22 25 28 31
0.14 7 4 8 12 15 18 21 24 27 30 33

Note that the number of matched bases in the table must be equaled or exceeded within a 40
base subsequence. If the range within which the matches occur is greater than 40 bases, at least
one additional base must be matched. In the case of the one-diagonal criteria, if the number of
required matches is matched exactly, they must be contiguous (since this analysis assumes the
worst case — that mismatches are all insertions or all deletions).

ii. One neighborhoods
Similar logic can be applied to one-neighborhood k-mers. In this case, pairs of errors can be

treated as nearly equivalent to individual errors in the zero-neighborhood analysis.
As a similar example to the one used for zero neighborhoods, for A=40 gng £=4 , the largest

acceptable value of Kiis 13, and 39 bases must be matched if hits are distributed over 3
diagonals in a 5 diagonal window:

The equation for K1 is derived from an inequality. Given a A -length subsequence, a pair of

mismatches must occur every K, +1 bases to leave a final X1 -1 subsequence of matching
bases. If there is an odd number of errors, this reduces the number of final matching bases by
one. Thus,

A-[E20K, +D) -2 2K, —1 ©)

$Revision: 1.1.1.1 $ 5 $Date: 2004/04/14 13:45:15 $

Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

leading to

:DA+1—£%2—D£/2D[
O 1+mE2] F

Kl
(10)

As in the discussion for zero-neighborhoods, the position of the next allowable error may require a

smaller value for Ky .

H 0o O erna—re+1)2
L m+1—£%2—D£/2DDSB—(G—V)HF (E+1) He+D/2]
K, = min[[3 O
1J 1+ /2] DB 1+[(e+1)/2]
H B (1)

The minimum number of matched bases on ! diagonals in a window of € +1 diagonals is given
by

B =A+1-[g/2[K, —€%2+(k, —1)(i-1) (12)

From this equation, the following table can be derived for A =40 ang O =.98 Note that the
number of diagonals on which hits may be found (relevant diagonals) is less than the size of the

£+l diagonal window, since single mismatches (and diagonals) can be crossed by the one
neighborhood k-mer. (Note: | need to tweak the numbers in the last diagonal for each row since
some rows are computed based on A_,, and g+1 but must still be effective at finding A-length

matches.)

variation errors k-mer num- relevant | diag-1 diag-2 diag-3 diag-4 diag-5 diag-6 diag-7 diag-8
diags
\Y [K A diagonals 1 2 3 4 5 6 7 8
0.01 2 20 3 2 21 40
0.02 2 20 3 2 21 40
0.03 2 20 3 2 21 40
0.04 3 16 4 2 20 35
0.05 3 14 4 2 16 29
0.06 4 13 5 3 15 27 39
0.07 4 13 5 3 15 27 39
0.08 4 13 5 3 15 27 39
0.09 5 1 6 3 14 24 34
0.10 5 10 6 3 13 22 31
0.1 6 9 7 4 14 22 30 38
0.12 6 9 7 4 14 22 30 38
0.13 6 9 7 4 14 22 30 38
0.14 7 8 8 4 13 20 27 34
0.15 7 7 8 4 15 21 27 33
0.16 8 7 9 5 13 19 25 31 37
0.17 8 7 9 5 15 21 27 33 39
0.18 8 7 9 5 13 19 25 31 37
0.19 9 6 10 5 14 19 24 29 34
0.20 9 6 10 5 12 17 22 27 32
0.21 10 6 1 6 14 19 24 29 34 39
0.22 10 6 11 6 12 17 22 27 32 37
0.23 10 6 1 6 1 16 21 26 31 36
0.24 1 5 12 6 14 18 22 26 30 34

$Revision: 1.1.1.1 $ 6 $Date: 2004/04/14 13:45:15 $

Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

0.25 1 5 12 6 12 16 20 24 28 32

0.26 12 5 13 7 13 17 21 25 29 33 37

0.27 12 5 13 7 12 16 20 24 28 32 36

0.28 12 5 13 7 1 15 19 23 27 31 35

0.29 13 4 14 7 15 18 21 24 27 30 33

0.30 13 4 14 7 14 17 20 23 26 29 32

0.31 14 4 15 8 15 18 21 24 27 30 33 36
0.32 14 4 15 8 14 17 20 23 26 29 32 35
0.33 14 4 15 8 13 16 19 22 25 28 31 34

Note that one-neighborhood 4-mers can handle variations up to 0.33, and in other cases, at least
11 matched bases are required. In the case of the one-diagonal criteria, if the number of required
matches is matched exactly, they must be contiguous (since this analysis assumes the worst case
— that mismatches are all insertions or all deletions).

fi. Local alignments: computing y

For a local alignment with a scoring scheme O such that

fa=b#—
san =g U
X ifa#b (13)
where €~ 0, ¢<0 ,and |E| > C, along with a minimum length for a match, A , an allowable
v 0[0,1)

variation in the match, , and an expected sequencing accuracy, & (currently 0.98), the
minimum acceptable local alignment score between two sequences is

y=clid-¢|+&& (14)

The problem with (13) is that short, nearly error-free alignments may generate scores greater than

or equal to Y but not be legitimate matches. The length of the local alignment must also be taken
into consideration, so in addition to (13), the length of the alignment must be greater than or equal
to A€,

iv. Implementation

Fragment k-mers and sequence are populated by functions in AS_URT_frag_data. c, using the
FragmentData structure defined in AS_URT_frag_data.h. Fragments are processed in
groups (10,000 on Intels, 75,000 on Alphas) to reduce memory consumption.

Screen items and the screen item library are defined/managed in the
AS_URT_screen_objects.h/c and AS_URT_screen_lib.h/c files. Key processing
parameters are set for each screen item, including k-mer size, number of diagonals, and matching
base thresholds in the SetScreenObjectParameters function in
AS_URT_screen_objects.c.

Streaming of screen items against the fragment k-mers is performed by functions in
AS_URT_streaming. c. Functions therein collect k-mer hits using the hit_collector data
structure defined/managed in AS_URT_hit_collector.h/c which consist of HitObjects,
defined/managed in AS_URT_hit_objects.h/c and consolidate/analyze them using the

$Revision: 1.1.1.1 $ 7 $Date: 2004/04/14 13:45:15 $

Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

hit_analyzer structure defined/managed in AS_URT_hit_analyzer.h/c.

The hit_collector collects hits over a moving window of AS_READ_MAX_LEN diagonals. As
each diagonal is completed, it is added to the hit_analyzer, which consolidates the hits and
analyzes a smaller moving window of blocks (overlapping intervals within each fragment). The
DetectNewMatches function in AS_URT_streaming. c identifies candidate matches based on
the pattern of consolidated hits.

Candidate matches are combined, since nearby candidate matches are likely part of the same,
longer match. This also reduces the number of alignments to be performed. A banded alignment
is then performed on each candidate match to identify precise start and end positions in the
screen item and fragment and to determine whether or not the candidate match is a real match.
Real matches are then written to the output file as Int ScreenMatch messages as part of the
ScreenedFragMesg

4, Command Line Interface and Contaminant Warning File Format

A. Command Line Interface
The AS_URT module will be a stand-alone command-line application. Assuming the application is

named urc_screener, the command-line interface would be as follows:

urc_screener [—(alf)] [-(clr)] [-(w|P)] [-s] [-p] [-V]

<Screen Library Filename> <Input Filename>
-a append to library: either -a or -f is required
-f force replacement of library
-c screen for contaminants: either -c or -r is required
-r screen for ubiquitous repeats
-w generate warning message output (i.e., not proto-IO)
-P generate ASCII proto-IO output (default is binary)
-s generate statistics (celagram & summary files)
-p don't pre-parse input file (or update the library)
-v verbose

Creates/Maintains/Uses screen library in <Screen Library Filename>
Opens <Input Filename> to read .inp input
Writes output to <Input Filename>.urc or, if specified

writes warning messages to <Input Filename>.wrn

The output file will have the same name prefix as the input file. If the warning file option is
specified, the suffix will be “.wrn”. Otherwise it will be “.urc”.

B. Warning Record Format

Warning recor re an altern ilor m he n f DMS and i re-
assembly function of performing contaminant screening. Specifying the —w option on the
command line will produce a file with the given filename that contains this form of output.

Each line (record) in the file identifies a match between one fragment and one screen item. Each
record contains thr -delimited ASCII fields listing. in order, the fragment’s external
accession number (uint64) . the screen item’s external accession number (uint64). and a number
(float: (0,1])_characterizing the fraction of the fragment that is contaminated.

This format should be extended at some point to indicate the portion of the fragment that contains
n item. Thi itional information woul ful if rin mbly, i rs th
part of the genome is similar to a contaminant.

$Revision: 1.1.1.1 $ 8 $Date: 2004/04/14 13:45:15 $

Assembly Team Doc — Ubiquitous Repeat Tagger/Contaminant Detector Module Celera CONFIDENTIAL

AUTHORS
Hui-Hsien Chou
lan Dew

Created: December 2, 98

Revisions:

February 8,99, lan Dew
March 12, ’99, lan Dew
April 5,99, lan Dew
August 23, 99, lan Dew
February 10, ’00, lan Dew

$Revision: 1.1.1.1 $

Changed ISCs to ISNs and modified .wrn output format.
Added one-neighborhood & alignment text.
Updated for new screener & added large design section.

Updated command line interface for —s and —p options.

9 $Date: 2004/04/14 13:45:15 $

	ii.	One neighborhoods
	iii.	Local alignments: computing
	iv.	Implementation
	AUTHORS

