Fragment Correction

In Fragment Correction we use information from fragment overlaps to make

corrections in fragments. We then can take all existing overlaps and re-evaluate them
with the corrected fragments. We expect that such overlaps will have a much lower error
rate, hence we can use a lower error-rate threshold for unitig construction. Such unitigs
should be longer and less repetitive.

How The Current Version Works

1.

The original overlaps are duplicated (so that each overlap appears as both A- B and
B- A) and sorted.

[This step is done by programs get-olaps and rev-olaps.]

A given range of fragments Lo...Hi is extracted from the fragment store and saved in
memory. All overlaps involving these fragments are read and sorted with respect to
the other fragment involved. The other fragments are then streamed from the
fragment store, one at a time, and all of their overlaps with fragments saved in
memory are processed.

For each overlap the alignment is calculated. Let A be the fragment saved in
memory and B be the fragment being streamed from the fragment store. The
alignment is then used to cast votes about each base in A involved in the alignment:

¢ In an exact-match region of length = k, each base at least x bases in from the
end of the exact-match region receives a CONFIRM vote.

¢ Any substitution or indel that is surrounded by v or more exact-match bases casts
a vote for that error. Only a single base insertion is allowed at any position in A.

¢ The values of k, x and v are all parameters to the program.

E.g., in the following alignment, assuming that k=7, x=1 and v=9, the last line
indicates the votes that would be cast, where C means confirm, I means insert, D
means delete, s means substitute, and a blank indicates no vote:

acgttacgtaccag-taattagcattacgattagcatattac-t
acgttacgtacctggtaattag-att—-cgactagcatattacgt

Cccceceeeecee s D S CCcccceee 1

After all overlaps with the fragments saved in memory have be processed, the votes
are “tabulated” as follows:

¢ A position with 2 or more confirm votes is left unchanged.

¢ A position with 0 confirm votes and a strict majority of 2 or more votes for a
specific correction has that correction recorded in the output file.

¢ A position with exactly 1 confirm vote but also a strict majority of 6 or more votes
for a specific correction has that correction recorded in the output file.

¢ All other positions are left unchanged.

The corrections are written to a binary file called frag.cor. An indication is also
written about the overlap degree on each end of the fragment. If the degree is less



than a specified threshold, an indicator bit is set. This is because a fragment with
very few overlaps cannot accumulate enough votes to make any corrections using
the above rules.

[Steps 2—4 are done by program correct-frags.]

After corrections have been recorded for all the fragments, overlaps are recalculated
based on the corrected fragments. This process mirrors the one used to determine
the fragment corrections.

First a range of fragments Lo...Hiis read from the fragment store and saved in
memory. Then the fragment corrections for these fragments are read and applied to
them.

Next, all overlaps involving these fragments are read and sorted with respect to the
other fragment involved. The other fragments are streamed from the fragment store,
one at a time, with each corrected prior to aligning with fragments in memory. For
each overlap, the alignment is calculated and a revised OVL message generated if
the resulting error is suffciently low (or if the low-degree bit described above was
set).

. As an option, we also allow a . CGB file to be input. From it we read the FOM
messages (which indicate fragment overlaps off the ends of unitigs) and we create a
file listing any of those whose overlap was processed and had too high an error rate.
If we delete these overlaps from the original set of overlaps we hope to preserve all
unitigs in the . ccB file, and possibly extend them.

We also build a map of fragments to unitigs. We use this to filter overlaps. We keep
an overlap iff its fragments are in the same unitig or are in two unitigs that are
connected by a low-corrected-error overlap. Thus, we eliminate overlaps between
unitigs that do not have a “good” overlap.

[Steps 5-7 are done by program correct-olaps.]



