Assembly Team Doc LocalUnitiggingRez.rtf $Revision: 1.1.1.1 $ Celera Confidential

Local Unitigging for Repeat Resolution

Karin A. Remington

1. Overview

The proposed repeat resolution strategy is to consider each gap in turn , or a set of neighboring gaps,
gathering any material that potentially belongs in a given gap (by virtue of mate links to proximal contigs),
and apply unitigging rules in an attempt to congeal the data, thereby closing or narrowing the gap.

2. Process

Borrowing from the rocks and stones code base in AS_REZ, potential fill material can be determined for
each gap within a scaffold. An all-to-all overlap computation is performed, resulting in an overlap graph on
this (presumably small) set of primarily local data. It’s hoped that the localization of the data will enable
unitigging to successfully find meta-unitig(s) which close or narrow the gap.

3. Issues

Separate process, or wrapped into CGW? NEEDS TO BE WRAPPED INTO CGW... and early in the
process so that gaps are narrowed before scaffold merging has the opportunity to make any mistakes.

One neighborhood? Or greater than 1?7 PERHAPS ONE NEIGHBORHOOD TO START, with successive
iterations?

To get the overlap edges, do we need to go back to the overlap store? Would there have been edges lost in
the upstream process that we might want to recapture? NO OVERLAP EDGES

Keep unitigs as is, or split into component fragments and re-unitig them? GRANGER’s INITIAL
THOUGHT IS TO USE UNITIGS, this requires fragment instantiation...

How to perform the all-to-all overlap:

Q DP_Compare on unitigs? (for overlaps, this isn’t too efficent, since some of the banding
advantage is lost). But has the advantage that it works out “out of the box” on unitig length
objects.

Q Overlapper?

How to implement the graph and the unitigging rules:

O LEDA would be easier to program, but might be difficult to integrate within the Assembly
build process. (I think IMPOSSIBLE to integrate is closer to the truth.)

O Could implement simple unitigging with simple graph structures a la current CGW

O Functional interface to unitigger, might be best from an engineering point of view, to preserve
a single codebase and automatically inherit all improvements made in AS_CGB code. ISSUE
about how much current unitigger directly or implicitly thinks in terms of fragments versus
unitigs.

4. Feasibility Study

It would be instructive to look at some examples from simulations and components or grande human data

LocalUnitiggingRez.rtf $Date: 2004/04/14 13:43:17 $ -1-

Assembly Team Doc LocalUnitiggingRez.rtf $Revision: 1.1.1.1 $ Celera Confidential

and see what might happen by using unitigger out-of-the-box on the fragments that are considered potential
fill in a gap

AUTHORS

Karin A. Remington
Created August 31, 2001
Modi fi ed Septenber 7, 2001

LocalUnitiggingRez.rtf $Date: 2004/04/14 13:43:17 $ -2-

