Celera CONFIDENTIAL Assembler Pipeline /O

ASSEMBLER PIPELINE I/0

(Proposed Amendments for HUMAN)

This document is the defining document for the precise information content of every
message that flows through the Celera Assembler pipeline. As such, it contains precise
message specifications for the input and output of the assembler. The document
describes the messages in order of their introduction along the assembler pipeline, and
provides an Appendix with concrete examples of each input/output message.

Note: The addition of Scaffold Link (SLK) messages, the addition of internal ID fields to the
defining message for all data types; and the changes to Contig messages and the addition of
Degenerate Scaffold messages in support of unscaffolded contigs.

1 Conventions

The Assembly Group has adopted an organic software development strategy, rapidly prototyping pipeline
components and then evolving them into robust components. To this end, the individual modules are
engineered to communicate via a simple ASCII-based encoding of the pipeline messages, which can be
switched over to a more compact and efficient binary representation in production situations. The
requirement for the ASCII encoding was that it be easy to read by a human (aiding debugging), while also
being trivial to parse. The result is the 3-code formatted messages described within this document.

11 3-code format

The format of all messages is called 3-code because every field name and message type name is
compressed to a 3 letter abbreviation, with the added convention that type names are all capital-letters and
field names are all lower-case letters. A record is encoded across several lines of input where the first line
has a ‘{* in column 1 and the last line consists solely of a ‘}” in column 1. The 3-code for the message type
name is in columns 2-4 of the header line, followed immediately by a new-line. The lines between the
header and tail encode the fields of the record. Each field-line has the 3-code for the field in columns 1-3
and a > in column 4, followed immediately by the relevant data in columns 5 to the end-of-line, or in
subsequent lines in the case of multi-line fields.

1.2 External & Internal Accession Numbers

All input and output data is uniquely identified by accession numbers -- 64-bit unique identifiers. The
assembler uses its accession numbers for each object type in the form of a 32-bit unsigned integer. In
many of the message types described here, both the internal and external accession numbers are included
for tracking purposes. The field names for external accession names start with an ‘e’, whereas the field
names for an internal accession number start with an ‘i’.

To facilitate analysis of assemblies, the internal accession number should be loaded into the appropriate DB
tables.

07/05/07 $1:HOSpeeDeeHumanrtvHt Page-1
200404H41345FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 1

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

1.3 Data formats

1.3.1 Numeric and character data

For the messages specified in this document, the Pascal data structure is given (at left) along with the
corresponding 3-code (in shaded area at right). The encoding of the data for each field is given by
specifying the scanf UNIX format that would correctly read the input. Thus, for example, ‘%lu’ reads a
long and ‘% 1[AD]’ reads one character, from the two characters in square brackets. By convention, scalar
values are encoded as a single capital letter and the sequence of letters corresponds directly to the sequence
of value names in the scalar definition.

1.3.2 String Data

Arbitrary length strings, as needed for ‘Quality’, ‘Sequence’ and ‘Source’ fields, are encoded as a series of
new-line terminated strings ending with a line containing a . in column 1. In the scanf translation
specification of such message components, we take the liberty of using regular expression syntax for these
fields, with the symbol ‘(I denoting a new-line. The encoded string is the concatenation of all the

characters save the new-lines and the terminating period.

1.4 Sequence Intervals

Sequence intervals are specified as a pair of positions within a sequence and positions are the points
between symbols of the sequence. The leftmost position is numbered 0, so that for example, (0,4) specifies
the first 4 symbols of a sequence, while (2,2) specifies the position between the second and third symbols.

Seql nterval : record bgn, end: int32 end

1.5 Alignment Positions

For every fragment in a contig/unitig alignment, a complete record of its alignment to the gapped consensus
is supplied. The endpoints of the fragment in the alignment are specified as a Seqlnterval, while the
detailed alignment is given by a ‘delta encoding’. This delta is a series of positive integers indicating the
positions within the fragment’s clear range at which to insert a dash to align to the consensus sequence. The
delta encoding for the alignment of a unitig in a contig is with respect to the unitig’s ungapped sequence
coordinates. Note that in aggregate, these records specify the complete layout of the contig/unitig, and a
precise representation from which to reconstruct the multi-alignment with just a bit of additional effort.

1.6 Quality Values

Phred quality values are integers in the range [0,60]. An encoding based on a series of, say blank-separated
integer constants, is too space consumptive for even our modest prototyping requirements, so we choose to
encode these numbers as a series of printable ASCII characters. To wit, a value i is mapped to the ASCII
symbol ‘0’+i. Thus a sequence of Phred numbers is mapped to a sequence of characters and encoded in a
3-code record as a string.

1.7 ProtolO File Termination

All valid ProtolO files shall be terminated with an “End of File” (EOF) message whose purpose is to signal
that the ProtolO file was written properly and in its entirety. The EOF message contains fields specifying at
what time the message was written and the status of the run producing the message. In keeping with UNIX

07/05/07 $1:HOSpeeDeeHumanrtvHt Page-2
200404H41345FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 2

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

conventions, a status of 0 is normal and any other value is an error code. Any file which ends in an EOF
message with a non-zero status, contains no EOF message, or contains multiple EOF messages is
considered invalid and should be used only for debugging purposes. Finally, the message also contains
space for a text comment.

The EOF message also contains two fields to support checksum verification of the file. The first field is a
boolean flag; a non-zero value indicates that a checksum has been computed for the field and is in the
subsequent checksum field. A value of O indicates that the value in the subsequent checksum field should
be ignored.

EndOfFileMesqg:
record {EOF
status: int32 BIEEIE e
. crt:%d
created: time_t hck: &d
has_check: int32 chk:%1u
checksum: uint64 com:0(3[~\n] 0O) *.
comment: string(char) }
end
acc %1lu
acc $1lu
acc: %lu

2 Software Support

This specification is supported by the proto IO library, that is documented elsewhere.

3 Inputs

The input to the assembler is prefixed with an “audit record” for tracking purposes. Following the audit
record, there are three main components to the Assembler input: fragments, links and distance records, and
screen and repeat items.

3.1 Audit and Batch Messages

Every pipeline transmission batch will have a batch record as its first item and an audit record as its
second item. A batch record will consist of the name of the batch, the time the batch was created, a unique
identifier for the batch, and a possibly empty comment field. An audit record will consist of a list of the
agents that produced the batch in the sequence they were applied, and for each agent the name of the agent,
time of completion, version number, and a possibly empty comment are specified:

Batch_ID: uint64

Bat chMesg: { BAT
record
nane: string bna: %
created: tine_t crt: %
eaccession: Batch_ID acc: % u
coment: string com %
07/05/07 $1:HOSpeeDeeHumanrtvHt Page-3
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 3

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

end }

Audi t Mesg: { ADT
list of AuditLine (<ADL-record>[]) *.

}

Audi t Li ne: { ADL

record
namne: string who: %
conplete: tine_t ctm %
version: string vsn: ¥%s
conment: string com %

end }

32 BACs

Each BAC that is the source of finished or unfinished pseudo-reads (shredded reads), unshredded
sequence, light-shotgunned reads or BAC end reads is defined by a BAC message. The reads that derive
from the BAC will reference the BAC through their locale field. There are three possible levels at which a
BAC or portion there of are identified in the BAC message: bac_id, seq_id, and (num_bactigs , bactig_list).
A distance record which contains the mean and standard deviation of the BAC’s length is referenced in this
record, and a text field describing the origin of the BAC is also included.

Distance_ID, Locale_ID: uint64

{BAC
record
action: scalar (AS_ADD, AS DELETE,

AS_REDEFI NE) act: [ADR]
ebac_i d: Locale_ID bid:%u
type: scalar (AS_ENDS, AS_ LI GHT_SHOTGUN, AS_UNFI NI SHED,

AS_FI NI SHED) typ: [ELUF]
eseq_i d: Locale_ID sid: %u
entry_time: time_t et m %l
el engt h: Di stance_|I D len:%u
num bactigs: intl1l6 bt g: %d
bactig_list: |ist of BactigRec (<BTG-record>0) *
sour ce: “description of data source” src: (% "\ n]0O)*.
end
Bacti gRec: record {BTG
eaccessi on: Locale_ID acc:%u
Lengt h: int32 | en: %
end }

There are four types of BACs, specified as follows:
AS_ENDS:

Only the ends of the BAC have been sequenced to use as BAC guides. . The num_bactigs

07/05/07 $1:HOSpeeDeeHumanrtvHt Pase4
200404H41345FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 4

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

field and the bactig_list are undefined, and will not appear in the ASCII version of this message.

AS_LIGHT_SHOTGUN:

A low coverage shotgun has been performed and the reads have not been assembled. The BAC
contents will appear as LBAC fragment reads. The num_bactigs field and the bactig_list are
undefined, and will not appear in the ASCII version of this message.

AS_UNFINISHED:

A medium coverage shotgun has been performed and the reads have been assembled into
contigs (which we will here after refer to as bactigs to represent contigs derived in this fashion from a
BAC). The BAC contents will appear as either/both Bactig reads, or as shredded UBAC fragments.
The (num_bactigs , bactig_list) fields are only relevant for this type of BAC.

AS_FINISHED:

The entire sequence of the BAC has been sequenced and assembled into a single contig. The
BAC contents will appear as either/both a single FullBAC read or shredded FBAC fragments. . The
num_bactigs field and the bactig_list are undefined, and will not appear in the ASCII version of this
message.

The bac_id field is relevant for all four types of BAC message and specifies the unique identifier for the
BAC which is persistent in the database even if features or sequence of the BAC change.

The seq_id field is only relevant for AS_UBAC and AS_FBAC types and specifies a unique identifier for
the sequence of the BAC which will change when the sequence changes.

The redefine action is used to redefine a BAC to a more finished state. The allowed transitions are from
type AS_ENDS to the other three types, from AS_LIGHT_SHOTGUN to AS_UNFINSHED or
AS_FINISHED, or from AS_UNFINISHED to AS_UNFINISHED or AS_FINISHED. These redefinitions
do not require the deletion of previous fragments which reference this BAC via the Locale_ID. Note that a
redefine can only go toward a more finished state so, for example, once a BAC has been defined as an
AS_FINISHED, BAC end or light shotgun fragments can not be input for that BAC. However, BAC end
and/or light shotgun fragments can be input for a BAC before it is redefined as an AS_FINISHED so the
order of messages is important. The reason for allowing a redefinition from type AS_UNFINISHED to
AS_UNFINISHED is to reflect a better intermediate assembly for the same BAC presumably due to more
sequence data for that BAC without requiring that all data referencing the BAC be deleted first. When
redefining type AS_UNFINISHED to type AS_UNFINISHED an entirely new set of bactigs should be
defined in the bactig_list. A redefine does not delete the Bactigs and Fragments associated with old
incarnations of the BAC. These may still be referenced by subsequent messages.

3.3 BINs
This section is an attempt to anticipate how STS information could be defined for input to the
07/05/07 $1:HOSpeeDeeHumanrtvHt Page-5
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 5

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline /O

assembler. This should be treated as speculative until it is better defined.

Each BIN represents a bin formed by a LOD score of 6.

Bi nMesg: {BIN

record

action: scalar (AS_ADD, AS DELETE) act: [AD|

eaccessi on: Locale_ID acc: % u

entry_time: time_t et m %

sour ce: “description of data source” src: (% ™M\ n]D)*.
end

3.4 Fragments (reads and guides)

The primary input to the assembler is a fragment message, which can describe a Celera read (AS_READ
and AS_TRNR), an external whole genome shotgun read (AS_EXTR), or a guide. Guides are sub-
categorized as either being (a) BAC-ends (AS_EBAC), (b) pseudo-reads from unfinished BACs
(AS_UBAQ), (c) pseudo reads from finished BACs (AS_FBAC), (d)reads from lightly-shotgunned BACs
(AS_LBAC), and (e) STSs (AS_STS). In addition, for the overlay assembler much longer sequence guides
are allowed which are the sequence of unshredded bactigs from unfinished BACs (AS_BACTIG) and
possibly the complete sequence of finished BACs (AS_FULLBAC). The differences between read and
guide fragment messages are as follows.

1. Accession: Every read or guide has an accession number. The interpretation of the accession
number is always expected to be a 64-bit UID produced by the Celera database. For AS_READ,
AS_EXTR, AS_TRNR, AS_EBAC, AS_LBAC, AS_UBAC, AS_FBAC, and AS_STS this is the
fragment UID. For AS_BACTIG this is the bactig UID. For AS_FULLBAC this is the BAC’s
Seqiemce UID.

2. Quality: Every read has a quality vector and sequence clear range, whereas guides need not. In
the absence of quality values, the quality field is NULL and the clear range is the entire fragment.

3. Locale UID: Every guide has an associated locale whereas this field is undefined for reads. The
interpretation of the locale is different for each kind of guide, but is always expected to be a 64-bit
UID produced by the Celera database. For the BAC-based guides it is a UID assigned to the
particular BAC from which the guide came.. This UID must have been previously defined as a
BAC. If over time, end reads, then bactigs, and finally finished sequence for a BAC become
available, the same locale should be given to the associated guides for that BAC. For an STS
guide, a distinct locale number should be assigned to each bin formed when a sufficiently high
LOD score (we suggest 6). is used to order STSs. Each bin must have been previously defined as a
BIN message. This field is not defined for celera reads, does not appear in the ascii version of
the message, and will have an undefined value

4. Sequence UID: This field is only defined for unfinished BACs (AS_UBAC), unfinished and
unshredded BACs (AS_BACTIG), finished BACs (AS_FBAC) and finished and unshredded BACs
(AS_FULLBAC) (It is not defined for AS_EBAC, AS_LBAC, AS_READ, AS_EXTR,
AS_TRNR, and AS_STS, its value is not defined, and it will not appear in the ASCII version of
the message). This is a 64-bit UID produced by the Celera database to track the sequence of a

BAC.
07/05/07 $1:HOSpeeDeeHumanrtvHt Page-6
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 6

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline /O

5. Bactig UID: This field is only defined for unfinished BACs (AS_UBAC), and unfinished and
unshredded BACs (AS_BACTIG). This is a 64-bit UID produced by the Celera database to track
the sequence of a bactig. (Elsewhere, it is not defined and it will not appear in the ASCII version
of the message).

6. Locale Position: Each contig of an unfinished BAC (AS_UBAC) and each finished BAC
(AS_FBAC) is assumed to have been partitioned into a set of neatly overlapping pseudo-reads that
are given as guides to the assembler. For these pseudo-reads, the assembler requires the interval of
the underlying BAC (for AS_FBAC) or bactig (for AS_UBAC) from which the pseudo-read was
excised, communicated in the locpos field. This field is defined only for unfinished and finished
BACs (AS_UBAC and AS_FBAC). Elsewhere, it is not defined, and it will not appear in the
ASCII version of the message. In the case of several unordered “bactigs” (contigs of an unfinished
BAC) for a given unfinished BAC, each bactig should have been assigned a unique identifier
(passed in the bactig field), defined by the associated BAC message, and the locpos interval is
defined relative to the position of the pseudo read within the bactig.

FragMesg: {FRG
record
action: scal ar (AS_ADD, AS_DELETE) act: %[AD]
eaccessi on: Fragnent _ID acc: % u
variant of action:
AS_ADD:
record
type: scalar (AS_READ, AS EXTR, AS_TRNR, typ: %[RXTELUFSBC]

AS_EBAC, AS_LBAC,
AS_UBAC, AS_FBAC, AS_STS,
AS _BACTI G, AS_FULLBAC)

el ocal e: Locale_ID loc:%u
eseq_i d: Locale ID sid:%u
ebactig id: Locale_ ID btd: % u
| ocpos: Seql nt erval pos: %, %
sour ce: "description of data source" src: O(% ™M\ n]0)*.
entry_time: time_t et m %l
sequence: string(char) seq: I(% M\ njO)*.
quality: string(bytes) qlt: 0(% ™M n]0)*.
clear_rng: Seqlnterval clr: %l %l

end '

end
end }

3.5 Links and associated distance records

After the relevant fragments have been added to the system one may then add (or delete) pairwise distance
constraints or links between them. A link message contains the type of link being added or deleted and the
two fragments involved. If a link is being added then one also needs to specify the time of entry, a reference
to the distance record specifying the distance range between the fragments, and a scalar indicating whether
the fragments are in the same, opposite orientation, or unknown orientation. Note that mates and BAC
guides are always in the opposite orientation with respect to each other. The distance constraint always
refers to the distance between the 5’ end of the two fragments, regardless of orientation. The last two link
types model user input constraints and may be between any pair of fragments in the system.

Links are divided into six categories according to the source of the link:

07/05/07 $1:HOSpeeDeeHumanrtvHt Page-7
200404H41345FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 7

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

* AS_MATE links are for mated pairs of 2K, 10K, 50K, and transposon library end reads from the
Celera sequencing pipeline and external sources of whole genome shotgun sequence, or from
AS_LBAC fragments that were sequences from opposite end of subclones.

* AS_BAC_GUIDE links are between end-sequenced BACs.

* AS_STS_GUIDE links are between paired STSs.

* AS_REREAD links permit one to specify that two reads were sequenced from the same end of an insert.
These are rereads that were resequenced for some reason, e.g. the PCR-prep encountered a
mononucleotide repeat and stuttered, and thus was resequenced with a plasmid prep. In this case
neither the distance or orientation fields convey any information.

* MAY_JOIN links represent single links that may be incorporated if there is not conflicting
information.

* MUST_JOIN links represent infinitely weighted links that will be followed if at all possible.

The distance between mates is specified in distance records that are passed to the assembly system as
records requesting that a given distance entity be added or deleted. The distance record specifies the action,
the ID of the distance entity, and (in the case of insertion) the normal distribution from which the distances
were sampled. The fields mean and st ddev give the mean standard deviation of the distribution. Thus, for
example, 99% of all links referring to a particular distance message will be of length in [mean-3stddev,
mean+3stddev]. Note that there should be exactly one distance record for each insert library, even if the
library was designed to have insert sizes equal to that of another library. The reason for this is that the
assembler will be empirically determining a distribution of observed mate distances and these distributions
will be different, even for libraries designed to have the same mean distance. The distance for BAC Guides
is specified in a BAC message so for type AS_BAC_GUIDE the Distance_ID in the LKG message must be
the same as the Distance_ID in the corresponding BAC message. The type AS_STS_GUIDE has not been
implemented yet so the defining message for Distance_ID in this case has not been defined.

The orientation field specifies the relative orientation of the two fragments. Links representing sequence of
opposite ends of some type of insert (AS_MATE or AS_BAC_GUIDE) must specify an AS_INNIE
orientation (3’ ends are adjacent) except in the case of mated pairs of reads from a transposon library,
which must specify an AS_OUTTIE orientation. Specifying an AS_UNKNOWN orientation is equivalent
to specifying 4 links, each with one of the possible orientations.

Di stance_I D, Fragnent I D, Screen_ltem.|D: uint64

Li nkMesg: {LKG

record
action: scalar (AS_ADD, AS_DELETE) act: %[AD|
type: scal ar (AS_MATE, AS_BAC_GUI DE, typ: %[MBSRYT]

AS_STS GUI DE, AS_REREAD,
AS_MAY_JO N, AS_ MUST_JO N)

efragl: Fragnent _ID fgl: % u
efrag2: Fragnent_ID fg2: % u
variant of action:
AS_ADD:
record
entry tinme: tinme_t etm %
edi st ance: Di stance_I D dst: % u
orientation: scalar (AS_NORVAL, AS_ANTI ori: %[NAI QU
AS_| NNI E, AS_QUTTI E,
AS_UNKNOWN
07/05/07 Jd oS pec Dot Page-8
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 8

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL

end
end
end

Di st anceMesg:

record
action: scal ar (AS_ADD, AS_DELETE)
eaccession: Distance_ID
nmean: fl oat 32
st ddev: fl oat 32
end

3.6 Screen ltems

Assembler Pipeline /O

{DST

act: %[AD|
acc: % u
nmea: %
std: %

Screen items are used to specify vector, contaminant, or repeat sequences that should be masked or
tagged for the purposes of assembly. The repeat_id field indicates a user determined classification of the
item, item, while the relevance bit-vector field is used to indicate how matches should be handled within
the screener or in subsequent programs. For example, in the case of ubiquitous repeats, a relevance value
that binary-ands with AS_OVL_HEED_RPT (1) instructs the overlapper not to base overlaps on sequences
in matching intervals. Simple repeats (and heterochromatin) should have relevance fields that binary-and
with AS_URT_IS_SIMPLE (8) to instruct the screener to consolidate matches more effectively.

Repeat_ID: uint64

Screenl t emVesqg:

Record
Acti on: (AS_ADD, AS_UPDATE, AS_DELETE)
Type: scal ar (AS_UBI QREP, AS_CONTAM NANT)

eaccession: Screenltem|D
erepeat _id: Repeat_ID

Rel evance: int32
Sour ce: "description of data source"
Sequence: string(char)

Variation: float32 in [O,.1]
M n_l ength: int32
End

Repeat | t em\Vesg:

record
erepeat _id: Repeat_ID
whi ch: string(char)
| engt h: i nt32

end

3.7 Sequencing Plate and Library Information

{ SCN

act: %[AUD|
typ: %[UuC]
acc: % u
rpt:%u
rel: %

src:O(% "N\ n]0O)*.
seq: O(AA M\ n]O)*.

var: %
m n: %
}

{RPT

rpt: %u
wch: %
| en: %
}

Sequencing plate messages and well messages convey information necessary to correct and detect plate

07/05/07 SO seeoe st
20041044134 5FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1

2004/04/14 13:41:57 catmandew Exp
$

Page-9

Page 9

Celera CONFIDENTIAL Assembler Pipeline I/O

tracking errors that occur in the lab and/or data tracking system such as mislabeling and plate rotation. The
sequencing plate message specifies the forward and reverse sequencing plate unique identifiers for the pair
of plates derived from the same clone plate as well as the library that the clones on the clone plate were
selected from. The well message specifies for each fragment which sequencing plate and which well on the
sequencing plate the fragment was sequenced from.

The library message contains information about the library from which the fragment was derived. In
particular, it contains the ID of the donor, thus aiding in polymorphism detection, and the distance record
specifying the size distribution of the type of clone from which the fragment was derived. This will allow
a fragment to be associated with a particular type of clone even if its mate is not present in the input.

Library, plate, and well messages do not need to be provided for fragments. However, if there is a well
message for a particular fragment, it must reference valid and existing plate and library messages.

Li brary_I D: ui nt 64
Donor _I D: ui nt 64
Plate ID: uint64
Well _ID uintl6

LibraryMesg:
Record {LIB
eaccession: Library_ID acc:%lu
donor: Donor_ID don:%lu
distance: Distance_ID dst:%1lu
source: string(char) src:0(%[~\n] 0O) *.
end }
acc: %lu
acc: %lu
acc: %lu
SeqPl at eMesg: {sSQP
Record
eseq_plate for: Plate_ID spf: %u
eseq_plate_rev: Plate ID spr:%u
elibrary: Library_I D lib:%u
end }
Vel | Mesg: { VEL
Record
efrag: Fragnment _I D frg:%u
eseq_plate: Plate ID sqp: % u
ewel | : vell _ID wel : % u
end }
07/05/07 SO 8 pecDoe - Page-10
200410414134+ 5FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 10

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline /O

4 Outputs

The assembler output consists essentially of the Extended Unitig Graph, the Extended Contig Graph and
the Scaffold. The nodes of the unitig graph are output as Unitig messages, and the edges are output as
UnitigLink messages. Similarly, the contig graph is output as Contig and ContiglLink messages. The
scaffold is repesented by a series of Scaffold messages. These basic snapshot components are accompanied
by a) Augmented Fragment messages, which present the assembler’s determination of each fragment’s
screen matches, mate status, chimeric status, chaff status, and clear range, and b) Mate Distribution
messages, which summarize the mean and standard deviation of the mate distances AS ASSEMBLED
(versus as input).

41 The Augmented Fragment Messages

Assembler annotation of individual fragments is provided by augmented fragment messages (AFG), emitted
for each fragment that the assembler has processed. The accession indicates the Celera UID assigned to the
fragment being augmented. Any Screen Matches found during the assembler’s screening phase are
provided, along with the assembler’s evaluation of the fragment’s mate status, chimerism status (all
chimeric fragments will appear in singleton unitigs — currently set to 0), and chaff status (singleton
fragments are chaff). (. The mate status field should be interpreted as follows.

* ‘G’ GOOD_MATE: the mate is confirmed by the assembly

* ‘B’ BAD_MATE: the mate is inconsistent with the assembly

* ‘N’ NO_MATE: no mate for the fragment was input into the assembler

e ‘U’ UNRESOLVED_MATE: mate is neither confirmed nor inconsistent with the assembly

The clear range field reflects any changes to the clear range made within the assembler.

AugFr aghesg: { AFG

record
eaccessi on: Fragnment _I D acc: (% u, %)
i accession: int32
screened: list of ScreenMatch scn: O<SMA-r ecor d>* .
mat e_st at us: scal ar (GOOD_MATE, BAD MATE,

NO_MATE, UNRESOLVED MATE) nst : %4 [GBNU]
chimeric: Bool ean chi: %
chaff: Bool ean cha: %
cl ear _rng: Seql nt er val clr: %, %
end }

Each Screen Match record provides the affected interval of the fragment (‘where’), which Screen Item was
matched (‘what’), the repeat identifier and relevance (described in) and the matching interval and
orientation within the Screen Item

Scr eenMat ch: { SMA
record
wher e: Seql nterval in fragnent whr: %, %
what : Screen_I D wht : % u
repeat _id: RepeatlD rpt: % u
rel evance: int32 rel: %
portion_of: Seqlnterval pof : %, %
direction: scalar (AS_FORWARD, AS_REVERSE) dir: %[FR]
end }
07/05/07 Jd oS pec Dot Page-11
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 11

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

4.2 The Extended Unitig Graph

A Unitig message provides a unique accession number assigned by the assembler, and communicates
several calculated statistics on the unitig, as well as its multi-alignment. The assembler passes along the
unitig coverage statistic, which is used internally to determine whether a unitig should be classified as
unique. The unitig status should be interpreted as follows.

e ‘U’ AS_UNI QUE: all unique unitigs (defined in terms of high coverage stat and length
> 1kbp) and those repeat unitigs (all others) that are not placed in any scaffolds

e ‘C’ AS_CH MER represents a single fragment that has been deemed chimeric

e ‘N’ AS_NOTREZ: arepeat unitig that appears in only one scaffold

e ‘S’ AS_SEP: a repeat unitig that has surrogates (i.e., has instances in more than one
scaffold)

e ‘X’ AS_UNASSI GNED: status as yet undetermined

An interesting branch point at either end of the unitig is output using the a_branch_point and
b_branch_point fields. The magnitude of the field value specifies how far from the respective unitig ends
the branch point is located, while the sign indicates the orientation of the branch points. A positive value
indicates a branch from repeat into unique, while a negative value from unique into repeat. If no interesting
branch point is detected (i.e., none within a certain fixed distance from the end, currently 1000 b.p.), the
field will be set to zero.

The remaining fields provide the multi-alignment of the unitig, including the gapped consensus and quality
strings (and their length), an indicator of whether any fragments were forced into the alignment, and the
complete encoding of the multi-alignment as described in .

Chunk_ID: uint64

UnitigMesg: {UTG

record

eaccession: Chunk_1ID acc: (%1lu, %u)

i accession int32 src: O(% A\ n]O)*.
sour ce: "description of data source" cov: %
coverage_stat: float32

status: scalar (AS_UNIQUE,AS_CHIMER,

AS_NOTREZ,AS_SEP, sta:%1[UCNSX]
AS_UNASSIGNED) abp: %

a_branch_point: int32 bbp: %
b_branch_point: int32 len:%d

length: int32 cns:O($[~\n]0)*.
consensus: string (char) glt:0(%[~\n]10)*.
quality: string (bytes) for:&d

forced: boolean SRR

num_frags: int32 e
f_list: list of MultiPos !

end

Mul ti Pos: record {MPS

type: scal ar (AS_READ, AS_EXTR, AS_TRNR, typ: %[RXTEFUSLuUB]

07/05/07 Jd oS pec Dot Page-12
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 12

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

AS_EBAC, AS_FBAC,
AS_UBAC, AS_STS, AS_LBAC,
AS_UNITI G AS_BACTI G

ei dent: Fragnent _I D md: % u

sour ce: "description of data source" src: (% ™M\ n]O)*.

posi tion: Seql nt er val pos: %d, %d

delta_length: int32 dl n: %d

delta: list of int32 del : O((%d)*D)*
end }

Each Unitig Link Message identifies a pair of unitigs and the orientation of the overlap between them. The
orientation is encoded as a scalar with the following interpretation:

* ‘N’ Normal e ‘T Innie

* ‘A’ Anti-Normal e ‘O’ Outie
In the case of the containment overlaps, there are only two possible orientations for each overlap, anti-
normal or innie (the unitigs are either aligned in the same direction, or in opposite directions).
The overlap_type specifies the relationship between the unitigs:

. ‘N’ No overlap

. ‘O’ Regular overlap
. ‘T’ Tandem overlap
. ‘C’ chunk1 contains chunk?2
. ‘I’ chunk?2 contains chunkl1

For contained unitigs, the overlap distance is specified as if the contained unitig was extended past the B
end of the containing unitig.

Overlap length
< >
Chunk 2
A B
Chunk 1
A B

If the number of contributing edges is two, and a single read is required for both edges, then
is_possible_chimera is set to true. This will happen if a read is part of a mate in the other chunk
and is also required for the chunks to overlap. If the edge includes a guide, the includes_guide is set
to TRUE. The mean_distance and std_deviation fields describe the distribution of the edge
distances represented in the link (a negative distance means the unitigs overlap). The number of edges
(mates and potentially a chunk overlap) contributing to the mate edge is given by the field
num_contributing. The status field, determined late in the process after a best scaffold has been chosen,
gives the status of the link with respect to the assembly. Finally, the jump_list gives a list of all pairs

07/05/07 Jd oS pec Dot Page-13
200404H41345FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 13

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline /O

contributng to the edge. The length of the jump_list corresponds to the number of contributing edges if
overlap_type takes the value AS_NO_OVERLAP. Otherwise the length of the jump_list will be
num_contributing — 1.

Uni ti gLi nkMesg: {ULK
record

eunitigl: Chunk_I D utl: %u

eunitig2: Chunk_I D ut2: %u
orientation: scal ar {AB_AB, BA BA,

BA AB, AB_BA} ori: %[NAQ]
overl ap_type: scal ar (AS_NO_OVERLAP,
AS_OVERLAP,

AS_TANDEM OVERLAP,
AS_1_CONTAINS_2,

AS_2_CONTAI NS_1) ovt: %[NOTCl]
i s_possi bl e_chinmera: bool ean i pc: %l
i ncl udes_gui de: bool ean gui : %
mean_di st ance: fl oat 32 nmea: %
std_devi ati on: fl oat 32 std: %
num contri buti ng: i nt32 num %l
st at us: scal ar (AS_| N_ASSEMBLY,

AS_POLYMORPHI SM
AS_BAD, AS_CHI MERA,

AS_UNKNOWN_| N_ASSEMBLY) st a: %d[APBCU]
junmp_list: list of Mate_Pairs jls:0(%u, % u, %[MBSYT
end 10)*
}
Mat e_Pai rs:
record
inl, in2: Fragnment _I D
type: scal ar (AS_MATE,
AS_BAC_CUI DE,
AS_STS QU DE,
AS_MAY_JO N,
AS_MUST_JO N %d,%d, %1 [MBSYT]
end

4.3 Extended Contig Graph

Contigs are ordered collections of Unitigs (and Surrogates, pending placement of all fragments) that cover
contiguous regions of the genome. A contig is composed of fragments from the contained Unitigs, as well
as fragment-like “surrogates”, which are subsets of repeat Unitigs introduced to span gaps in contigs in the
absence of complete repeat resolution. A Contig Message provides a unique accession number assigned by
the assembler and a representation of the multi-alignment of the contig. The consensus sequence is gapped,
that is, it will contain dash characters as needed to allow the alignment of all fragments. For each of the
‘num_pieces’ component fragments, a MultiPos record is given specifying its location in the multi-
alignment and a delta encoding of the alignment to the consensus. Further, for each ‘num_unitigs’
component unitig, an UnitigPos record is given specifying the extent and multi-alignment of the unitig
within the gapped consensus. The placed field indicates whether this contig appears in a subsequent

07/05/07 Jd oS pec Dot Page-14
200404H41345FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 14

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

Scaffold message (AS_PLACED) or Degenerate Scaffold message (AS_UNPLACED). The type field in
the UnitigPos indicates how this unitig was placed in the scaffold. For unplaced contigs, the unitig status
will be AS_SINGLE.

ConConMesg: {CCO
record
eaccession: Contig_ID acc: (%$1lu, %u)
iaccession: int32
placed: scalar (AS_PLACED, AS_UNPLACED) pla:%$1[PU]
length: int32 len:%d
consensus: string(char) cns:0(%5[*\n]0) *
quality: string (bytes) glt:0($[~\n]0)*
forced: boolean for:%d
. i npc:%d
num_pieces: int32 nou: %d
num_unitigs: int32 (<MPS—record>[) *
pieces: list of MultiPos (<UPS-recordsD) *
unitigs: list of UnitigPos }
end
UnitigPos: record {UPS
type: scal ar (AS_UNI QUE, typ: %[URSPS]
AS_ROCK, AS_STONE,
AS_PEBBLE, AS_SI NGLE)
ei dent: Chunk_I D lid:%bu
position: Seql nt erval
delta_l ength: int32 pos: %, %
del ta: list of int32 dl n: %
end del:0O((%)*DO)*
}

The edges in the contig graph are represented by Contig Link edges, direct analogs of the Unitig Link
Edges in the unitig graph. The only difference is in the objects being related.

Conti gLi nkMesg: {CLK
record
econtigl: Contig_ID col: % u
co2: % u
econti g2: Contig_ID
orientation: scal ar { AB_AB, BA_BA, ori: %[NAQ]
BA_AB, AB_BA}
overl ap_type: scal ar
(AS_NO_OVERLAP, ovt : %d[NORT]
AS_OVERLAP, i pc: %
AS_TANDEM OVERLAP) gui : %
i s_possi bl e_chi nera: bool ean mea: %
i ncl udes_gui de: bool ean std: %
nmean_di st ance: fl oat 32 num %l
std_devi ati on: fl oat 32
num contri buti ng: i nt32
st at us: scal ar
(AS_I N_ASSEMBLY, st a: %d[APBCU]
AS_POLYMORPHI SM
07/05/07 Jd oS pec Dot Page-15
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 15

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

AS_BAD, AS_CHI MERA, jl1s:0(% u, % u, %[MBSY
D *
AS_UNKNOAN_| N_ASSEMBLY))
jump_list: list of Mate_Pairs
end

4.4 The Scaffold

The Assembler’s best choice for the scaffolds is output as "the" assembly. Each scaffold is given as a list of
the pairs of adjacent contigs in the scaffold with the chi-squared estimate of the distance and standard
deviation between the pair of contigs. The unitig and contig links supporting the scaffold are flagged by
their AS_IN_ASSEMBLY status value.

In the list of contig pairs, the contigs are ordered from left to right across the scaffold. For example, if the
first three contigs in a scaffold have ids 1, 2, & 3. Then in the list of contig pairs, the first pair of contigs
would have contigl = 1 and contig2 = 2, and the second pair would have contigl = 2 and contig2 = 3. The
orientation field describes the pairwise orientation of the two contigs within the scaffold. A scaffold may
consist of a single contig, in which case the num_contig_pairs will be zero and the id of the second contig
will repeat the first, with arbitrary orientation and distance.

Scaf f ol dMesg: { SCF

record
eaccessi on: Scaffold ID acc: (% u, %)
i accessi on: i nt32 noc: %
num contigs_pairs: int32 (<CTP -record>[]) *
contig_pairs: list of ContigPairs)

end

ContigPairs: {CTP

record
econtigl: Contig_ID ctl:%1lu
econtigl: Contig_1ID ct2:%1lu
mean: float32 mea: 5t
stddev: float32 std: 5t
orientation: scal ar {AB_AB, BA BA, ori:%[NAQ]

BA AB, AB_BA} }
end

The edges in the scaffold graph are represented by Scaffold Link edges, direct analogs of the Unitig Link
Edges in the unitig graph. The main difference is in the objects being related.

Scaf f ol dLi nkMesg: {SLK
record
escaf f ol d1: Scaffold ID scl: %u
escaf fol d2: Scaffold_I D sc2: % u
orientation: scal ar { AB_AB, BA BA, ori: %[NAQ]
07/05/07 Jd oS pec Dot Page-16
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 16

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

BA _AB, AB_BA}

i ncl udes_gui de: bool ean gui : %

nean_di st ance: fl oat 32 nmea: %

std_devi ati on: fl oat 32 std: %

num contri buti ng: i nt32 num %l

jump_list: list of Mate_Pairs j1s:0(% u, % u, %[MBSYT
end 10)*

}

For the purposes of the viewer, unscaffolded contigs are also assigned a scaffold ID. This assignment is
indicated in a Degenerate Scaffold message (DSC), specified as follows:

Degener at eScaf f ol dvesg: {DsC
record
eaccessi on: Scaffold_ID acc: % u
econtig : Contig_I D ctg:%u
end }

45 Mate-Distance Distribution Messages

These messages are emitted to provide information on the distribution of mate lengths observed for those
pairs whose mates lie in the same unitig or contig (and thus whose distance in the assembly is known
precisely). For each mate-link distance record provided as input to the assembler with such a contributing
pair, a message describing the observed distribution of corresponding mates in the current assembly is
produced, with the ‘refines’ field referencing the original input record. The observed mean and standard
deviation for mate pairs of this type in the current assembly are given, as well as the minimum and
maximum distances observed for this type. Further, a histogram is provided of the number of contributing
pairs within each distance subrange of the entire range from min to max.

Mat eDi st Mesg: {MVDI
record
erefines: Di stance_I D eref: (%u, %) mea: %
i refines: int32 std: %
nean: fl oat m n: %
st ddev: fl oat max: %l
m n: int32 buc: %
mex: int32 hi s: O(%l0) *
num buckets: int32
hi st ogr am list of int32 }
end
07/05/07 Jd oS pec Dot Page-17
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 17

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline /O

5 Intermediate messages

The following table identifies each stage of the pipeline, and the component messages output from that
stage. (The input is presumed to be the output from the previous stage.

Note: The definition of these messages is for pipeline design purposes. The content of these messages
may be passed in containers other than the messages defined here (e.g., indexed files).

Input Gatekeeper Screener Overlapper Unitiger Scaffolder | Terminator
BAT IBA IBA IBA IBA
ADT ADT ADT ADT ADT ADT ADT
FRG IFG SFG OFG IAF AFG
LKG
DST IDT IDT IMD MDI
BAC IBC IBC
BIN IBI IBI
SCN ISN OVL IUM IUM UTG
RPT IRP UOM IUL ULK
ICM CCo
ICL CLK
ISF SCF
IDS DSC

51 Gatekeeper

The assembler modules require consecutive IDs beginning at 1 for efficient indexing of internal and
disk-based data structures. These 32-bit “IID’s” are assigned and added to every record containing a UID
supplied by the external DMS with the exception of Repeat_Ids, which already have this property. Thus the
GateKeeper module augments all input messages — BAT, FRG, LKG, SCR, BAC, BIN and DST -- with
internal ID assignments and passes them on as IBA, IFG, ILK, ISN, IBA, IBI and IDT messages. These
messages are identical to the input counterparts save that:

All acc-fields that contain external references are converted to (External,Internal) accession
number pairs, encoded in 3-format as “(%lu,%d)”. In the corresponding C-structs, the single field,
say “<X>" to the external ID, is replaced with two fields “e<X>" and “i<X>” to the appropriate
sized ints.

All other fields that contain external references are converted to internal accession numbers
encoded in 3-code format as "%d" with a suitably modified field name, ("xyz" becomes "ixz", for
example).

The Gatekeeper further checks all input for semantic consistency as described in the defining document for
that stage.

07/05/07 Jd oS pec Dot Page-18
200404H41345FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 18

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline /O

5.2 Repeat Tagger/Contaminant Screener

The URT/URC module consumes ISC messages, passes IDT messages through unaltered, and adds to
the IFG message. The consumed ISC messages are recorded in a screen index store on disk. To avoid any
ambiguity the augmented fragment records are called “ScreenedFragMesg” and their 3-code header is
“SFG”. The component IntScreenMatch records are the internal equivalents of the output ScreenMatch
records described in .

IntScreen_ID: int32

Scr eenedFr agMesg: { SFG
Record
“As Before”
cl ear _rng: Seql nt er val
screened: sorted |list of |IntScreenhatch scn: [O<ISM-record>* .
“As Before”
end }

5.3 Overlapper

The Overlapper module stores screened fragments in a fragment store, passes on relevant fragment
information to the subsequence stages in an OFG fragment message, and adds overlap messages (OVL) to
the stream. An OFG fragment message message the SFG, save that:

1) the type name is OFGinstead of SFG
2) the seq and glt fields are absent.

Overlaps between fragments are described in “OverlapMesg” records as follows. It would be preferrable if
the overlaps for a given fragment followed its OFG message and if that fragment were the A _f r ag for the
relevant overlap records.

Over | apMesg: {ovL
record
ai frag: IntFrag_I D afr: %
bi frag: IntFrag_I D bf r: %l
orientation: scalar (AS_NORMAL, AS_| NNl E,

AS_QUTTI E, AS_ANTI) ori:[NAIQ
overl ap_type: scal ar (AS_DOVETAIL,
AS_CONTAI NVENT,

AS_SUPERREPEAT) ol t: [DCM
a_hang: i nt32 ahg: %
b_hang: i nt32 bhg: %
quality: fl oat 32 qua: %
m n_of f set, mo: %
max_of f set: i nt32 mxo: %l
pol ynmorph_ct: int32 pct : %
del ta: string(int) del : O((%) *0) *.
end }
07/05/07 Jd oS pec Dot Page-19
200404H41345FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 19

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

5.4 Unitigger
See output messages for description of the Unitig message. The internal version merely substitutes an
internal ID for the Celera UID, except for IntMultiPos records, which also include a “contained” field to

specify the containment relationship between a contained fragment and it’s parent in the reduced graph. A
fragment that is not contained has a zero in this field.

A series of independent UnitigOverlapMesg messages specify chunk graph edges. Each edge identifies a
pair of chunks and the orientation of the overlap between them. Details of the orient and ovrelap_type fileds
are identical to the UnitigLink description of . The UnitigOverlapMesg also provides the best, minimum,
and maximum overlap length between the pairs of unitigs. The minimum and maximum equal, except in
the case of edges induced by a tandem repeat, where the extent of possible ‘slippage’ in the overlap is thus
indicated. Note that not every tandem edge will be detected by overlap alone, and the CGB will transitively
infer when the overlapping parts of an edge involve tandem satellites. This inference will be reflected in the
overlap_type field. In this internal context, the AS_ NO_OVERLAP value is not exercised.

Uni ti gOverl apMesg: {uom
record
chunk1: I nt Chunk_I D ckl: %
chunk2: I nt Chunk_I D ck2: %d
orient: scal ar (AB_AB, BA BA,
BA AB, AB BA) ori: %[NAQ]
over |l ap_type: scal ar (AS_NO_OVERLAP,
AS_OVERLAP,

AS_TANDEM OVERLAP,
AS_1_CONTAINS_2,

AS_2_CONTAI NS_1) ovt: %[NOTCl |
sour ce: “description of data" src: (% ™M\ n]O)*.
best _overlap_l ength: int32 | en: %l
m n_overlap_l ength: int32 m n: %l
max_overlap_length: int32 max: %l
quality: fl oat 32 qua: %
}

end

5.5 Scaffolder

The scaffolder reads Internal Unitig Messages, and outputs an internal representation of the extended unitig
graph, the extended contig graph and the scaffold, as well as mate distance summaries. The internal
versions of these messages correspond directly to their external counterparts.

6 Feedback Messages

The main purpose of feedback messages is to provide a mechanism for the Overlay Assembly Team to
request changes in the input data as errors in the data are detected during the course of assembly. The
changes would then be made by the Pre-Assembly Team and updates sent to the Overlay Assembly Team
using existing mechanisms for updating and adding input data.

In order to avoid polluting the already-overflowing 3-code name space, there is a single message type to
encompass all edits. This message, known as a Batch Update Generator (BUG) Message, and its variants

07/05/07 Jd oS pec Dot Page-20
200404H41345FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 20

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

are described below.

#define AS_MSG_NO_BAC 0

BugMesg: {BUG
record
type: scalar (AS_CREATE_BAC, AS_REMOVE_BACTIG, typ:%1 [CRASGrs]

AS_ADD_BACTIG, AS_SPLIT_BACTIG,
AS_CHANGE_CLR_RANGE, AS_REMOVE_CONTIG,AS_SPLIT_CONTIG)

source: string(char) src:0(%[~\n] 0O)*.
variant of type:
AS_CREATE_BAC:

bac_eaccession: Locale_ID bac:%1lu
seqg_eaccession: Locale_ID seqg:%1u
AS_REMOVE_BACTIG:
bac_eaccession: Locale_ID bac:%1u
seq_eaccession: Locale_ID seqg:%1lu
bactig_eaccession: Fragment_ID btg:%1lu
AS_ADD_BACTIG:
src_bac_eaccession: Locale_ID sbc:%1u
src_seq_eaccession: Locale_ID ssg:%1lu
dst_bac_eaccession: Locale_1ID dbc:%1lu
dst_seq_eaccession: Locale_ID dsqg:%1lu
bactig_eaccession: Fragment_ID btg:%1lu
AS_SPLIT_BACTIG:
src_bac_eaccession: Locale_ID sbc:%1u
src_seq_eaccession: Locale_ID ssg:%1lu
bactig_eaccession: Fragment_ID btg:%1lu
num_pos: int32 nps:%d
split_array: list of BugSplitPos (<BSP-record>l) *
AS_CHANGE_CLR_RANGE:
old_frag_eaccession: Fragment_ID old:%1u
new_frag_eaccession: Fragment_ID new:%1lu
clear_rng: Seglnterval clr:%d, %d
end
end }
BugSplitPos: {BPS
record:
position: SeglInterval pos:%d, %d
bactig_eaccession: Fragment_ID btg:%1lu
end }

The AS_CREATE_BAC operation creates a new BAC of type AS_UNFINISHED with O bactigs. The
source field for the new BAC contains the source field of the BUG message, and hence can be used to
indicate the reason for the BAC’s creation. The accession number of the new BAC and its associated
sequence are pre-specified in the bac_eaccession and seq_eaccession fields respectively of the BUG
message.

The AS_REMOVE_BACTIG operation removes a bactig from a particular BAC. The fragment message for
the bactig is unchanged, but the source field is appended to the source field for the BAC. It is the
responsibility of the Assembly Team to ignore removed bactigs, which can be identified from the fact that
they do not appear in the bactig list of any BAC message.

The AS_ADD_BACTIG operation adds a bactig to a particular BAC, specified by dst_bac_eaccession and

07/05/07 ShbLOS s eeDoe— et Page-21
200410414134+ 5FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 21

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

dst_seq_eaccession. The bactig must be pre-existing, but its associated fragment message does not need to
be part of the input stream. If the bactig is currently part of another BAC, then src_bac_eaccession and
src_seq_eaccession are set to the accession of that bac and its sequence. Otherwise, both fields are set to
AS_MSG_NO_BAC. Both the BAC message and the bactig’s fragment message are updated to reflect the
new assignment.

The AS_SPLIT_BACTIG operation splits a bactig into two or more new bactigs. The original bactig is
implicitly removed from its associated BAC, which is specified by src_bac_eaccession and
src_seq_eaccession, and the new bactigs are inserted in its place. The number of splits to be performed is
given by the num_pos field. For each split, there is a pair of entries in the split_array field. More
specifically, if the bactig is to be split into intervals p(0)-q(0), p(1)-q(1), ..., p(M)-q(M), where p(0) < ¢(0)
,-.. P(M)<q(M), then the resulting bactigs will contain the sequences [p(0), ¢(0) 1, [p(1), q(I)], ..., [
p(M), g(M)]. The accession numbers of the bactigs are given in the split_array entries.

Finally, the AS_CHANGE_CLR_RANGE operation sets the clear range of a specified fragment to a new
value. As part of making the change, the old fragment is deleted (meaning that an AS_DELETE FragMesg
must be sent to the Assembly Team) and is supplanted by a new fragment whose ID is specified by the
new_fragment_eaccession field. The new fragment is identical to the old save the change in clear range and
the addition of the BugMesg’s source field to its own.

BUG messages are periodically be batched together into a single file by members of the Assembly Team,
who will then send the file to Pre-Assembly for processing. The file must be processed sequentially so that
any operation can refer to the results of a preceding operation. Pre-Assembly then sends back the processed
data in the form of incremental updates to the Assembly Team using currently-existing ProtolO messages.

Another use for the BUG messages arises within the frame work of the regional assembler. Here, an
internal version of the BUG message, called IBG message , is used to edit contigs. The two types
AS_SPLIT_CONTIG and AS_REMOVE_CONTIG are used to indicate that the objects that are being split
or removed are not bactigs but rather contigs.

Currently, IBG messages are only implemented under CA but not AS.

A. Input Examples

{BAT

bna:celsim batch 0
crt:952112525
acc:0

com:

(No comment)

}

{ADT

{ADL

who:Celsim 1.54 (gaussian) 2000/02/22
ctm:952112525

vsn:
com:
)
)
07/05/07 ShbLOS s eeDoe— et Page-22
200410414134+ 5FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 22

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

{DST

act:A

acc:1

mea:1774.000000
std:191.333328

}

{BAC

act:A

bid:10000000002

typ:E

etm:0

len:1

src:

BAC for Bac Ends 10000000002
}

{FRG

act:
acc:
typ
loc:
src:

3f

[7347,6897]

J.0.1 (2) [873,1323] [450,0]

H‘P"J[\)Dﬁ

0000000002

etm:0

seq:
cccagattccttccecctcectgctgcggaccacagtagttttcatgtgcagttacacccactgaaggecattce
tcacattaagcatgcaccttatccaggagatgtgcgcacggttgcgaagattctgecggecgecgggggtta
ataccattagacatgaatcaagcggtgtaaagcgtgtcgaagctcagaataaagatgtttaatgccagac
cacgtgtggagtagtgttgtgtattactaacgcgagtaactagacaggcatcgagtgcttccggtagaga
ggagttattataaagtagatagatagtcatgaaggagagcattattctggcctatactgttttaattgceg
tacggtccaacacgtaccttctggagccggtgtgaccgtaaacgattaagtgtgataatgggagccgett
tcacaatgccccctgcatcecgecgaagac

qlt:
JJJJJJIFIJISTIPIJOITIIDIBISIIIEIITIIIIIEIIRI0T6IIIIIIIIIIT86IIIIIIIIIPIIFT
JJSJIJIQIJIJIIIIIIIIIIQIJIISIIIIIIIIIISINICBIIIFIIIIIIIIIIIIIIIIIIITIIITIIIIT
; JJJIMIT>JIIJIIII>TIIIIIIIIIIIIIIIOCIIIITIIIOIIIII6IIIIIIIIIIIE : JIJ>TJJIITITT
JJQJJJJJIIQIFJIBIIIIOIIJIIIIPJOIIIIDDIJII=0JP>IJJJJIJIIEIJITITIIIIIIIIIII<AQT
GJJJITIKIJIGIJIISIIIIIEIITIIAIIIIIILITITIIIIIIIIIIFRITITIKIIGIHHITI78J85T
JJJJLJgJggabJdgdggagaggdgaayd: JKJQIJgseJJgdgagygygbdQiJaJdg7JrJIT ; JMJPJJJJJJI<JJJdgrLd
JJIPJJJIIIIII>IIIIIIIIII=ITITT

clr:0,448
}

{FRG

act:
acc:
typ
loc:
src:

3r

[5515,6135]

B.0.3 (14) [16,281] [0,265]
J.0.1 (2) [0,111] [509,620]

HF:;jw,’:u

0000000002

etm:0

seq:
atcgagtctcaactccttgagctggaattatcgtccacaacgctagagatgcaccgecggtaacctgtcta
cgtagtcacaccacgcgggccgatgaggtacttgacgaccggcacctgtcaccttcttaatatcgtattg
agagttaatacgcgctttgcgcctgcatcttattcgeccgcagagcagcactacaccccgetctaacgtgg
atctacattcaggccggtcgcttgtaataatttgatgcccgactagtccgggtctatcecctgtgetggta
acggttgatcccgcaagtaactcgtctcaaagatcaatattacacagagatgccagctcgtttgggectaa
tggacagttacaaaagagagaggtgtcagggtgtggccacgcgctttagatatggctacccgettcacat
taacctgatcaataggcattagatgcgggtacagtcacaagccgattctaacaatttataccacaatcag
cgcagacacccgttcattttaacgecctagatcgcttctggtcgectcaaccataatccggtcatgaagtgg

07/05/07 ShbLOS s eeDoe— et Page-23
200410414134+ 5FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 23

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

gggaacaagatctgtaagaaatccggagtctggctcgacccatcggecctggagatct

glt:
JFJJgJgJgeJJI>JJGrJ>JJCcJdJdgdgdgaggJAaJJJggHI7JsgMdJdgdaaaagaddi<i<JddgdgdgdgdaadaosJiagagagagdgdadc
JJBJJJ60JJJJJ?JJJgdgddg>Jid;JdgdgigsdddddiadddQdiggdyddTdggsIBIJDIJEIJIRAIQRITITT
JJJIB=JJJJJddi=JJJJJgddgddgdgddgdAarRJJJJgJg8JbdJJJIKkIsSPIIIT; JJQRJIJ?JQIITITIIIGCIIT=T
JJJI<JI<I=JIJJJIRIISIIIII=<;IDIIJIIII<MIGIIIIIIIRIISI>EI<IIIIIII8QIITITIIF
JJJJIBI>I<JIIIIQI?JJJIIIINIMITIIT : JJJJIJPJIINCI6IIIIET : <JJJJIJJIJJIIJJIIIIJTIITT
J<<J?JBJJJJJJI7JJIJI8IICIIJI?@IPIJIJJIIJIOIPICIIITJHTILIAJI?IJIT?FIIIITITIITIGIT
>JJJJJJJJIFJJIIGIIIIIHHIIQLIJIIIAIIIIT7IJJRIDIIIGITIIIIIIIIPIITITITIIGLKIT
<5JJJJIN?JJJIIJII6TIIIIIIIINIIIIIIIIIIIIIL>IIIRIJITIDLIE ; JJIGLIGIIIFI86JT
JMJJJ?JJICIIJIII6RISIIIIIIIDIIRIPIITINAITI<TIJI?KITJRCITI=0JHT

clr:0,617

}

{LKG

act:A

typ:B

fgl:2

fg2:3

etm:0

dst:1

ori:I

}

07/05/07 ShbLOS s eeDoe— et Page-24
200410414134+ 5FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 24
2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

B. Output Examples

{ADT

{ADL

who:Celsim 1.54 (gaussian) 2000/02/22

ctm:952112525

vsn: $Id: IOSpecDoc_Human.rtf,v +341.15 2000/03/24 3+++58+34——skravitz20:16:07 karin
com:

}

{ADL
who:/home/skravitz/humanSrc/AS/bin/gatekeeper
ctm:953754213

vsn: (blank)

com:

Complete call: /home/skravitz/humanSrc/AS/bin/gatekeeper -Q -P -f a006.Store a006
Started: Wed Mar 22 14:43:33 2000
Working directory: /data/assemblyl/skravitz/a006

{AFG
acc: (22,21)
scn:

mst:N
chi:0
clr:0
}
{AFG
acc: (57,56)
scn:

,654

mst:U
chi:0
:0,4

clr 87

07/05/07 $1d1OSpeePeeHumanrthvt41- Page-25
200410414134+ 5FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 25
2004/04/14 13:41:57 catmandew Exp

$

Celera CONFIDENTIAL Assembler Pipeline I/O

}

{AFG

acc: (94,93)
scn:

mst:N
chi:0
clr:0,636

}

{AFG

acc: (105,104)
scn:

mst:N
chi:0
clr:0,533

}

{AFG
acc:(2,1)
scn:

mst:U
chi:0
clr:0,448
}

{AFG

acc: (20,19)
scn:
mst:G
chi:0
clr:0,668
}

{UTG

acc:(4711,0)

src:

gen> uu [7631,6842]

cov:2.000

sta:N

abp:0

bbp:0

len:809

cns:
GTTGCGAACGTGATTCCCTATACCCGTACCAGAATATCCAGGTGATGTACTCTTTCCGTGGTICGCACTTT
AGTAAAAAATCACTTGATCGGCTGTAGAGCGCTCTGTGCTGCACTACGTACTTACCCCAGGATGAGGTTC
TGGGCTAATCAACTTGCAATGTGCAATCGCCAGGGTAGTACAATCGTTGCATCCTAGTAAAACAACTCTT
GTTCCCTCATGGACGTGTTTTCGATACAGGATGTGTCCAACCGGGTGATGTGACTGTTGTCCGGGGAAGC
GATGCTCTCGCCCCAGATTCCTTCCCTCTGCTGCGGCACCACAGTAGTTTGTCGTGTGCAGTTACACTCA
CTGAAGGCCATTCGTCACATTTAAGCATCGCACCCTATATCCAGGAGATGTGCGCACGGTGTGCGAAGAT
TCTGCGGTGCCGGGGGTTAATACCATTAGACATGAATCATAGCGGTGTAAAGCGTTGTCGAAGCTCAGAA
TAAAGATGTTTAATGCCAGACCACGTGTGGAGTAGTGTTGTGTATTACTAACGCGAGTAACTAGACAGGC
ATCGAGTGCTTCCCGGTAGAGGAGGAGTTATATATAAAGTAGATAGATCAGTCATGAAGGAGAGCATTAT
TCTGGCCTATACTGTTTTAATTGCGGTACGGTCCAACACGTACCTTCTGGAGCCGGTGTGACCGTAAACG
ATTAAGTGTGATAATGGGAGCCGCTTTCACAATGCCCCCTGCATCCGCGAAGACCGGATGTGGCGGGAAT
TGAGAATAGAAAATGGTGCACGCCCCGAACCGATGTCIC

qlt:
JJJJIS5DA0JIIIIIIGCIFJIJIIIIIIIIIIIIIIIINIDIISITIIII?I?IQIJIIIIIIIIIIIOCRFIT
LJLJJJJI>0J??JJJIDIJIIIIIIS>RII=RIJIIIIEIIII>T?IJIF>TJJIIIIBITIIIIITIIIIIIAH
GQCJJJJ4JQJ; JIM<JJFJJJIDRJI6JJISIIDRLIJIIIITAIIHIIIIIIIIIILOIIIT :NJ7@JJTJIJT8
JJJJJIAJRIDIJI?JIIIIIIOIQRITI6IIIIIES : JRM58ITOIJEJIIII<INIRITIIQI; JJT9JIJTJT
JJJ==JJJJJT4JJISDIBINIGIRIIJI=JIJIIJII=J5IJJEIJI=T8IJJI9IJI5T; JTJIJIKIJIIIS5HITIJ :
>J9JJJJCcJgJgdgdrag=JJJiljgigigjgirjggJg4Jggayaad:J: JJJMLJIJJRIJIJIIIIIOIILIOIILIRIITY
JEJJQIT6INIJJIIIIIIIIIII>OIIIIIIIIIIISIT : JITIJI8IIIIIIIT4I=SJIIITIIITIITT
J=JJ1JJJJJagagddjiidd: ; 9JJJiGQJdJ; JKbJQJJQJJRIJJJQRJIIJPIJJIJJJJIIIIIIIFIITIGCIITT
JJ6JJI4MIJJIIIIIIIIIIISIBFSIQIIIIIIIIIIIIIIII=IIIIIIINIIII4IIIOITHITPIIL

07/05/07 ShbLOS s eeDoe— et Page-26
20040414134 5Fcatmandew Exp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 26

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

JG6JJJJJJIJIFJI9IISIINIPIIIJOIISIIIIITITIIIIIIIIIOIICITOI?TITITITII<RMIOIG
JRJIFJ?JJJ7JJII>IJIIINHIIIIIIIITHIICB6P8IITRIITRIDO>IIIQITIIIIIIT=JIBIITIMI
JJGJJJiJgJgi>JiygJgyggssJygMIgdgaggyggagdrd?

for:0
nfr:5
{MPS
typ:E
mid:22
src:

pos:0,669

dln:15

del:

192 192 218 235 286 325 357 362 370 377 382 399 406 446 640
}

{MPS

typ:E

mid:57

src:

pos:100,603

dln:16

del:

103 175 182 196 212 225 232 256 261 301 349 365 447 458 466 476
}

{MPS

typ:E

mid:94

src:

pos:148,798

dln:14

del:

55 89 126 133 138 163 215 223 230 317 413 432 475 493
}

{MPS

typ:E

mid:105

src:

pos:260,809

dln:16

del:

16 23 28 53 66 98 112 119 142 191 204 300 309 318 352 394
}

{MPS

typ:E

mid:2

src:

pos:291, 754

dln:15

del:

25 38 70 75 83 86 89 112 161 174 270 279 288 304 349
}

}

{ULK
utl:4711
ut2:4723
ori:N
ovt:N
ipc:0
07/05/07 ShbLOS s eeDoe— et Page-27
200410414134+ 5FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 27

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

gui:l

mea:-57.000

std:191.458

num:1

sta:U

jls:

57,56,B

}

{ULK

utl:4711

ut2:4723

ori:N

ovt:N

ipc:0

gui:l

mea:47.000

std:191.451

num: 1

sta:U

jls:

2,3,B

}

{ULK

utl:4712

ut2:4723

ori:0

ovt:N

ipc:0

gui:l

mea:67.000

std:191.449

num:1

sta:U

jls:

271,272,B

}

{cco

acc: (4873,0)

pla:U

len:809

cns:
GTTGCGAACGTGATTCCCTATACCCGTACCAGAATATCCAGGTGATGTACTCTTTCCGTGGTICGCACTTT
AGTAAAAAATCACTTGATCGGCTGTAGAGCGCTCTGTGCTGCACTACGTACTTACCCCAGGATGAGGTTC
TGGGCTAATCAACTTGCAATGTGCAATCGCCAGGGTAGTACAATCGTTGCATCCTAGTAAAACAACTCTT
GTTCCCTCATGGACGTGTTTTCGATACAGGATGTGTCCAACCGGGTGATGTGACTGTTGTCCGGGGAAGC
GATGCTCTCGCCCCAGATTCCTTCCCTCTGCTGCGGCACCACAGTAGTTTIGTCGTGTGCAGTTACACTCA
CTGAAGGCCATTCGTCACATTTAAGCATCGCACCCTATATCCAGGAGATGTGCGCACGGTGTGCGAAGAT
TCTGCGGTGCCGGGGGTTAATACCATTAGACATGAATCATAGCGGTGTAAAGCGTTGTCGAAGCTCAGAA
TAAAGATGTTTAATGCCAGACCACGTGTGGAGTAGTGTTGTGTATTACTAACGCGAGTAACTAGACAGGC
ATCGAGTGCTTCCCGGTAGAGGAGGAGTTATATATAAAGTAGATAGATCAGTCATGAAGGAGAGCATTAT
TCTGGCCTATACTGTTTTAATTGCGGTACGGTCCAACACGTACCTTCTGGAGCCGGTGTGACCGTAAACG
ATTAAGTGTGATAATGGGAGCCGCTTTCACAATGCCCCCTGCATCCGCGAAGACCGGATGTGGCGGGAAT
TGAGAATAGAAAATGGTGCACGCCCCGAACCGATGTCIC

glt:
JJJJI5DA0JIIIIIIGCIFIIIIIIIIIIIIIIIIIINIDITSITIIT?JI?IQITITIITIIITIIIOREFITT
LJLJJJI>0J??JJIDIJIIIIIIS>RII=RIJIIIIEITIII>T?IJIF>TJIIIIBIITIITIITIIIITIIIAH
GQCJJJJ4JQJ; JgM<JJFJJJbeJI6JJISIIDRLIJIIIIAJIHIIIIIIIIIILOIIIT : NJ7@ITTT8
JJJJIAJRIDIII?IIIIIIIOIQRITI6IIIIIES : JRM58JTOIJEIJIIII<INIRIIIQI; JIJI9JTIJ
JJJ==JJJJJ4JJISDIBINIGIRIIJI=JIJIIIII=J5IJIEJI=J8IJJ9JJ5J; JJIJIJKIIJIIIS5HITIT
>J9JJJJCJIJJIT4J=JJJI1JIJIIIIT4IIJIIIIT:J: JIJIMLIJRITJIIIIIIOIILIOIILIRITTY
JEJJQIT6INIJIIIIIIIIIIII>OIIIIIIIIIIISIT : JITIJI8IIIIIIIT4EI=STIIIIITITITT
J=JJ1JJJJJJJIIJIIIII:; 93JIIGQIT; JKDIQIJQIIRIJIRIIJPIIIIIIIIIIIIIIFIIIGITT
JJ6JJI4MJIJIIIIIIIIIIISIBFSIQRITIIOIIIIIIIIIII=JIIIIIINIIII4IIIOITHITPITL
JG6JJJJJJIIIFIQIISIINIPIIIJOIISIIIIITITIIITIIIIIIOIICITOI?IIITIII<RMIOIG
JQRJIFJ?JJITIIII>IIIINHIIIIIIIITHIICB6PB8IITCRIIJRIDO>IIIQITIIIIIIT=JIBITIMI
JJGJJJJgagaa>JJggyagaygssJggMddgdgagggygdgdgaiTrd?

07/05/07 ShbLOS s eeDoe— et Page-28
200410414134+ 5FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 28

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

for:0
npc:5
nou:l

{MPS

typ:E
mid:22

src:

23
[7631,6982]
J.0.1 (2) [958,1607] [649,0]
lab>TE

pos:0,669

dln:15

del:

192 192 218 235 286 325 357 362 370 377 382 399 406 446 640
}

{MPS

typ:E

mid:57

src:

23

[7631,6982]

J.0.1 (2) [958,1607] [649,0]
lab>TE

pos:100,603

dln:16

del:

103 175 182 196 212 225 232 256 261 301 349 365 447 458 466 476
}

{MPS

typ:E

mid:94

src:

23

[7631,6982]

J.0.1 (2) [958,1607] [649,0]
lab>TE

pos:148,798

dln:14

del:

55 89 126 133 138 163 215 223 230 317 413 432 475 493
}

{MPS

typ:E

mid:105

src:

23

[7631,6982]

J.0.1 (2) [958,1607] [649,0]
lab>TE

pos:260,809

dln:16

del:

16 23 28 53 66 98 112 119 142 191 204 300 309 318 352 394
}

{MPS

typ:E

mid:2

src:

23

[7631,6982]

J.0.1 (2) [958,1607] [649,0]

lab>TE
07/05/07 ShbLOS s eeDoe— et Page-29
200410414134+ 5FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 29

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

pos:291, 754
dln:15
del:

25 38 70 75 83 86 89 112 161 174 270 279 288 304 349

}

{UPS
typ:s
1id:4711
pos:0,809
dln:0
del:

}

}

{CLK
col:4873
co2:4885
ori:N
ovt:N
ipc:0
gui:l
mea:-57.000
std:191.458
num:1
sta:U
jls:
57,56,B

}

{DsSC
acc: 54786
ctg: 4873

}

{SCF
acc: (5034,0)
noc:4

{CTP
ctl1:4878
ct2:5033
mea:440.207
std:339.232
ori:0

}

{CTP
ctl1:5033
ct2:4887
mea:2233.627
std:378.697
ori:I
}

{CTP
ctl1:4887
ct2:4885
mea:1537.473
std:473.362
ori:0
}

{CTP
ct1:4885
ct2:4893
mea:344.179
std:187.479

ori:N
}
}
{IsL
scl:5
sc2: 6
ori:A
07/05/07 ShbLOS s eeDoe— et Page-30
200410414134+ 5FcatmandewExp-
$
07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 30

2004/04/14 13:41:57 catmandew Exp
$

Celera CONFIDENTIAL Assembler Pipeline I/O

gui:1

mea: 992. 000
std: 1125. 097
num 1

jls:
282,281, B

}

07/05/07 ShbLOS s eeDoe— et Page-31
200410414134+ 5FcatmandewExp-
$

07/05/07 $1d: 10SpecDoc_Human.rtf,v 1.1.1.1 Page 31
2004/04/14 13:41:57 catmandew Exp
$

	ASSEMBLER PIPELINE I/O
	(Proposed Amendments for HUMAN)

