Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

Celera Assembler:
Prototype Chunk Graph Builder Design

Version 1.0

Clark Mobarry
Abstract

This document describes the architecture of the chunk
graph builder (CGB).

1 Overview

The Celera Chunk Graph Builder is the module of the Celera Assembler that implements
the graph reduction algorithms discussed in "Toward Simplifying and Accurately
Formulating Fragment Assembly" by Eugene Myers. The CGB digests the output from
the overlap detector module and constructs a fragment overlap graph to represent the
interrelationships between the fragment reads. The fragment reads (OFG records) and
fragment overlaps (OVL records) form the vertices and edges of the fragment overlap
graph. The fragment reads have adjacent overlaps of two types: those that are 3' (suffix)
overlaps and those that are 5' (prefix) overlaps. The vertices are dual ported, one port for
the prefix overlaps and one port for the suffix overlaps. The edges are labeled as a whole
as dovetail or containment, and the edges are labeled at both ends with overlap orientation
information. "The essential property of a dovetail edge is that when one of its arrows is
directed into a read, the prefix of the read is in the overlap, and when directed out, the
suffix of the read is in the overlap."

The CGB module has a series of graph transformation functions. The initial fragment
overlap graph is formed from all of the fragment reads and fragment overlaps. This graph
has much more complexity than necessary to represent all possible assemblies of the
fragments. The initial graph (GO) is transformed into three intermediate graphs by
marking the vertices and edges. The G1 graph has all "deleted" and "contained" vertices
and their adjacent edges marked. The remaining vertices are considered essential. The G2
graph has all remaining edges marked as essential or as transitively removable edges. The
G3 graph has all essential edges marked as inter-chunk or intra-chunk edges, and the
essential vertices marked as a single fragment chunk, an inter-chunk vertex, or an intra-
chunk vertex.

2 Design

The human genome is large, about 3.5 Gbp. The Celera assembler will expect 10 times
coverage sampling of the genome on average. Thus, there will be on average 9 fragment

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

prefix overlaps and 9 fragment suffix overlaps. This means there will be 18 edges
adjacent to a vertex on average. In addition, we assume that there will be 450 to 550 base
pairs per fragment read. The assembler needs to ingest about 200000 fragments per day
staring 99/04. The complete data set will have about 70 million fragment reads. Thus, the
Celera assembler must be built for incremental operation.

UNIVERSAL TRUTH: A guiding principle for the Celera Assembler is the
definitions must come before reference. Likewise, all references must be removed
before the definition.

The transitive edge removal graph operation of the CGB requires an adjacency-list data
structure. ¥ 3 rental-operation—the-ads : o . o

UNIVERSAL TRUTH: The CGB will assume that the IIDs are issued in order by
the Gatekeeper module of the Celera Assembler and that a new batch of fragments
and edges will include all overlaps between the fragments and the old fragments.

The CGW module seems to require (1) an undirected graph data structure or (2) the
edges must be ordered along the chunk. This is because the fragment reads and overlaps
arrive in random order. A linear chain of the essential edges represented by arbitrary
directed edges with random directions would be hard to walk.

The current design of the CGB has components that scale as:

* (N_V) : operations on the vertices. This is a very common loop type.

e (N_VN_A)log (N_V N_A) : asort over the edges. The GO graph computation uses
a sort to compute the edge adjacency for each vertex.

* (N_V N_A) : operations on the edges. The G1 graph computation uses this loop to
mark the edges adjacent to contained fragment. This is a very common loop type.

* (N_V N_AN_A): operations on triangles. The G2 graph computation uses loop to
mark the transitively removable edges.

* N_V”2 :incremental processing tasks. Assuming that batches are roughly equal in
size, some house keeping tasks will have quadratic dependency.

2.1 OVL file input

The input stream is processed one file at a time. The OFG messages are appended to the
end of the current vertex array, rather than inserted into an array where the internal
identifier (IID) is used as an index. The array index in to the vertex array is the VID of
the fragment read. This disassociation of the fragment IID from the array index (VID)
will allow vertex reordering for memory locality. The CGB maintains a permutation
between the assembler IIDs in the fragment store and the chunk graph vertex ids. This

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

permutation is a time dependent thing that uses the current best guess for the locality of
the vertex. The new OVL messages are likewise appended to the end of the current edge
array. The directed pair of IIDs for the new fragment overlaps is mapped to the
appropriate VIDs. The new BRC messages are stored temporarily in an array. The 1IDs
are mapped to VIDs and then the information is placed in the vertex array.

2.2 GO graph: Undirected graph of all fragment reads and fragment overlaps
The most important data structures are the internal representation of a fragment read as a
graph vertex and the fragment overlap as a graph edge.

The CGB overlap edge records has some arbitrary choices. In the diagrams below it is
assumed that the A-fragment is on top of the B-fragment, and that overhang of the A-
fragment is on the left and the overhang of the B fragment is on the left. This is the
convention is consistent with the output of the overlap detector module. The overhang of
the A-fragment in base pairs is denoted "ahg" and measures the number of base pairs of
the A-fragment that is not in the overlap region. The overhang of the B-fragment is
denoted "bhg". By convention, the graphical representation of sequences are by arrows
that have the prefix at the DNA 5' end, and the suffix (arrow tip) at the DNA 3' end. For
dovetail overlaps, the flag "asx"/"bsx" is true if the suffix of the A/B fragment read is in
the overlap.

Dovetail overlap edge types by convention always have ahg>0 and bhg>0. This allows
four possible dovetail overlap edge orientations which correspond to the four possible
values of the pair (asx,bsx): ND (normal dovetail), AD (anti-normal dovetail), ID (innie
dovetail), and OD (outtie dovetail). The AD orientation is introduced to facilitate
graphics. Note that if we allow the A- and B-fragments to be interchanged then the AD
type is unnecessary.

Normal dovetail overlap:

ND A & ————— > asx=T, ahg>0
. B e > bsx=F, bhg>0
Anti-normal dovetail overlap :
AD A"Cc <————————— asx=F, ahg>0
B*c <————————= bsx=T, bhg>0
Innie dovetail overlap:
IDA ——m——————— > asx=T, ahg>0
B*c <————————= bsx=T, bhg>0
Outtie dovetail overlap:
OD A"c <———————- asx=F, ahg>0
B - > bsx=F, bhg>0

The (..)"c notation denotes the Watson-Crick complement sequence.

The overlap detector does not emit anti-normal overlaps since they are redundant with
normal overlaps if we are allowed to swap the A- and B-fragments. This classification
scheme is extended to containment overlaps by allowing the B-fragment to have non-

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

positive overhangs. The assignment of the suffix flag is made as if the B-fragment is
extended out of the overlap region on the B-end.

Containment overlap edge types by convention always have ahg>=0 and bhg <= 0. In
addition, there are four possible containment overlap edges. This allows four possible
containment overlap edge orientations which correspond to the four possible values of the
pair (asx,bsx): NC (normal containment), AC (anti-normal containment), IC (innie
containment), and OC (outtie containment). Contained overlap edge types where the dots
(...) graphically represent a non-positive overhang.

Normal containment overlap:
NC A ———————————— > asx=T, ahg>=0
B - >. .. bsx=F, bhg<=0

Anit-normal containment overlap:
AC A”Cc <———————————— asx=F, ahg>=0
B*c PG —— ... bsx=T, bhg<=0

Innie containment overlap:
IC A ———————— > asx=T, ahg>=0
B"c <————— ce bsx=T, bhg<=0

Outtie containment overlap:

OC A®c <———————————- asx=F, ahg>=0

.. B >. .. bsx=F, bhg<=0
Note that the AC and OC edge types are redundant with NC and IC edge type,
respectively. However, the overlap detector emits both innie-containment and outtie-
containment overlaps.

ASSERTION: A dovetail overlap has both overhangs positive.

ASSERTION: A containment overlap is modeled as an edge with an overhang of zero or
negative length in base pairs.

ASSERTION: Only one of the two overhangs of an overlap can be negative.
ASSERTION: For overlaps where both overhangs are zero, the symmetry with be broken

by the IID of the fragment reads. The fragment read with the smaller (earlier) IID
contains the fragment read with the larger IID.

2.3 Gl1 graph: Contained fragment read and Containment overlap marking

It is important to emphasize that fragments are not labeled as contained by the overlap
detector module. The deciding information is containment overlaps. That is, being a

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

"contained" fragment read is a derived quality from the existence of a containment
overlap to that fragment read. The fragment reads that are not marked as contained are
considered essential. The fragment overlaps that are not marked containment are
considered possibly essential. After the contained fragments are found, every remaining
overlap edge, that is not marked as deleted or containment, to a contained fragment is
marked as removed by containment.

We have an unresolved issue due to non-transitivity of containment.

Suppose the edges E are directed edges composed of two disjoint sets, ED and EC, where
ED are the dovetail overlaps and EC are the containment overlaps reported by the overlap
detector module.

The vertices V are composed of two disjoint sets: (1) the contained fragments (VC) that
are those vertices pointed to by at least one EC edge, and (2) the remaining fragments (V-
VCO).

There is an implementation issue caused of the non-transitivity of containment overlaps.
That is V1 contains V2, and V2 contains V3, does not imply V1 contains V3. This is
sometimes caused by a lousy overlap between V1 and V2. An implementation problem
for the chunk graph walker is that members of V-VC can have mate-links to the members
of VC that do not have EC edges from members of V-VC. Call the members of VC that do
not have EC edges from members of V-VC as VI. It turns out that some members of VI
naturally fit into the dovetail graph when the lousy containment edges are ignored. In
addition, it would be preferable for the chunk graph builder if every contained vertex has
a direct containment edge from the essential vertices.

The graph reduction can be refined by noting that EC is composed of two disjoint sets.
Define ER as the members of EC that have both ends in VC. These edges were marked
for removal in the original scheme. Suppose we mark them for removal as a separate step.
Then the relaxed containment marking algorithm is:

1. The edges E are directed edges composed of two disjoint sets, ED and EC, where ED
are the dovetail overlaps and EC are the containment overlaps reported by the overlap
detector module.

2. The vertices V are composed of two disjoint sets: (1) the contained fragments (VC)
that are those vertices pointed to by at least one EC edge, and (2) the remaining
fragments (V-VC).

3. The edges E are directed edges composed of three disjoint sets, ED, EC-ER, and ER,
where ER are the members of EC that join two members of VC.

4. The vertices V are composed of two disjoint sets: (1) the relaxed contained fragments
(VR) that are those vertices pointed to by at least one (E-ER)-(EC-ER) edge, and (2)
the remaining essential fragments (V-VR).

To recap, all members of VR are hanging off a V-VR vertex by an EC-ER edge, and all

the members of V-VR are connected by edges of E-EC.

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

2.4 G2 graph: Essential overlap marking
Describe transitive edge removal marking here. We are using Gene Myers' algorithm.

We are considering Granger Sutton's transitive edge removal algorithm. When a
contained fragment read is parallel to its container fragment read, a NC and AC edge pair
are recorded. When a contained fragment read is anti-parallel to its container fragment
read, an IC and OC edge pair are recorded.

The directed graph design would allow edge flipping. All edge that has the A-fragment
IID smaller than the B-fragment IID are flipped. The edge flipping of dovetail and
contained edges is possible do to the internal representation of those overlap types. The
data for the A-fragment and the B-fragment are simply exchanged, then the flipped edge
is put into the adjacency list of the new A-fragment.

2.5 G3 graph: Chunk graph creation

The purpose of the chunk graph representation is to explicitly reduce the complexity of
the graphical representation of the possible assemblies of the genome.

Describe how the vertices and edges are classified for their position in a chunk.

Describe how the chunk graph traverser finds the number of base pairs in a chunk.
The graph (V,E) is composed of a set of vertices (V) and a set of edges (E). The number
of vertices is N, and the number of edges is N.. A specific vertex is indexed as V[I]

A chunk has a linearly linked set of essential edges. The number of vertices is N, and
the number of edges is N.. A non-cyclic chunk has N, = N, -1. The N, number of
base pairs in fragment read chunk, is

N,= V[l].length + sum(1,N,.-1) (E[k,k+1].bhg),

And

N, = V[N_VCl.length + sum(1,N,-1) (E[k,k+1].ahg).

Note that N_VC counts all contained fragment reads for the chunk. This means that
contained fragments are potentially over counted in the statistics.

The number of base pairs in a chunk with three fragment reads is

(the length of the A fragment) + (the length of the B fragment) - (the length of the
overlap between A and B).

Describe how the chunk traverser finds the start points within a chunk.

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

ASSERTION: The 3' and 5' offsets of a contained fragment are within the 3" and 5' offsets
of the containing fragment.

Assume that all of the intra-chunk fragments have been stored in the array of chunk data
structures. The chunk overlap edges are determined by examining the inter-chunk
fragment overlap edges of the A-fragment and B-fragment. The chunk id of the fragment
at the other end of the inter-chunk edge will be available. For the A-fragment, if Spo <
3po then follow the fragment prefix overlaps, otherwise the suffix overlaps. For the B-
fragment, if Spo < 3po then follow the fragment suffix overlaps.

2.6 Statistical Unique/Repeat Classification

The global arrival rate of fragment reads is e_g = N_V / N_B. The arrival rate of
fragment reads local to a chunk is e_l = N_VC / p, where r is the length of the chunk in
base pairs for the purposes of the coverage statistic. We are computing p as
p_0=(1/2) 2 _, \ i (E[k.k+1].ahg + E[k.k+1].bhg)

The coverage statistic is

C=e_gp-(N_VC-1)In(2)

A singleton chunk has by definition p =0 and C = 0.

We also tried computing p as p_0+ (V[1].length +V[N_VC].length)/2 - (the total
number of bp sampled in the chunk including contains)/N_VC

3 Chunk Graph Analysis

A measure of the false positives and false negatives for the coverage statistics is available
using the simulator information. Each fragment read from the simulator has the positions
of the 5' and 3' tops of the fragments. For each fragment overlap, we check to see if the
overlap "ahg" and "bhg" are consistent with the true positions of the fragment read's
position in the genome. If the overlap is not consistent, then the overlap was do to a
repeat or was spurious. In particular for each edge in a chunk,

A.dir = (A.end > A.bgn ? +1 : -1), and

B.dir=(B.end >B.bgn 7 +1:-1).
These are the direction flags of the fragment reads relative to the global coordinates of
the genome. The global coordinates of the A-ward and B-ward tips of the A- and B-
fragments of edge E are

A.atip = (E.asx ? A.bgn : A.end)

A.btip = (E.asx 7 A.end : A.bgn)

B.atip = (E.bsx ? B.end : B.bgn)

B.btip = (E.bsx ? B.bgn : B.end)
A test for consistency is

(B.atip - A.atip) == A.dir * E.ahg +- error

(B.btip - A.btip) == B.dir * E.bhg +- error

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

The CGB accepts increment input by writing a checkpoint file of the labeled fragment
read and overlap arrays. In particular, some questions to be answered are:

N

We are concerned about how the chunk graph evolves as the coverage increases.
What is the compression factor for the fragment overlap graph by using the chunk
graph?

How does the unique/repeat classification statistic improve as the coverage increases,
for example 1x, 2x, 4x, 6x, 8x, 10x coverage. The quality of the classification statistic
is judged by using the information from the simulator. If any overlaps in the chunk
are from non-adjacent fragments, then the chunk is considered truly a repeat.

How consistent are the mate link distances (10% or 20%) between individual
fragment read in two chunks with the distances computed with the chunks?

What is the effect of using 20-mers instead for 24-mers?

How does the number of overlaps, time for execution, and other statistics vary with
coverage and genome size for the optimized executables? In particular, find the
scaling for OVL and CGB using the 1/1000® and 1/100th human simulations in the
incremental execution mode.

Global Data Structures

The memory usage of the CGB is dominated by the arrays defined and allocated in the
main routine.

int novl; /* The number of overlap records read. */
int nofg; /* The number of fragment records read. */
int nidt; /* The number of distance records read. */
int nedge; /* The number of edges in use. */

int nvert; /* The number of vertices in use. */

Tedge edgesl MAXEDGES];/* The internal representation of the

overlaps. */

Tvertex vertsf MAXREADID];/* The internal representation of

the fragment reads. */

BranchMesg thebrc[MAXVERTS]

typedef struct {

int32 avx, bvx; /* should be unsigned, currently
zero biased */

intle ahg, bhg;

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

int8 asx,bsx; /* can be but a bit */

int8 nes; /* The edge labeling */

int8 padding; /* Pad to 8 words == one D cache
line */
} Tedge;

int vertex_visited[MAXVERTS]; /* for graph transversal */
int vertex_tmp [MAXVERTS];

IntFrag_ID afr_to_avx[MAXREADID]; /* This array 1s used
to find the current vertex id (avx) from a known fragment
read IID. */

5 Optimization

The execution performance of the CGB will be enhanced by using conformal arrays
rather than an array of structures for the vertex information. Unlike the edge data, loops
over the vertices usually use only a small amount of the vertex information. This means
that we are guaranteed to waste a significant portion of the main memory to cache
bandwidth on unused data.

This CGB does not currently use multiple threads.

6 Limitations
The maximum allocation necessary to store the old and new fragments and overlaps must be specified by
the "-v maxverts" command line option.

If two fragment reads overlap each other with zero overhang, then it is arbitrarily chosen
that the newer fragment is marked as contained in the older fragment
(contained_vertex_marking).

To allow fragment delete messages to be deferable, the fragment IIDs should not be
reused. The delete messages will invoke a reassessment of contained and transitively
removed edges.

The chunk classifier could conceivably produce a cyclic chunk. The graph transversal
routine currently assumes that each non-singular chunk has two ends.

Do we allow a fragment to overlap with itsself?

Authors:

Clark Mobarry

Created : 12/14/98

Last revised: 07/05/07 CMM changed the vertex data structure to be an array of
structures.

Assembly Team Doc 07/05/07 Celera CONFIDENTIAL

$Source: /cvsroot/wgs-assembler/doc/Designs/ChunkGraphBuilder.rtf,v $
$Revision: 1.1.1.1 $

$Date: 2004/04/14 13:42:40 $

$Name: $

$Author: catmandew $

$Log: ChunkGraphBuilder.rtf,v $

Revision 1.1.1.1 2004/04/14 13:42:40 catmandew

Initial import

Revision 1.1 2004/02/10 14:10:23 dewim
Initial releaseO of the assembler source code.
Compiles on aix, tru64/osf, and linux.

Runs a006 on aix but not on tru64/osf or linux.

$Source: /cvsroot/wgs-assembler/doc/Designs/ChunkGraphBuilder.rtf,v $
$Revision: 1.1.1.1 $

$Date: 2004/04/14 13:42:40 $

$Name: $

$Author: catmandew $

Revision 1.4 1999/03/10 18:19:05 cmobarry

$Source: /cvsroot/wgs-assembler/doc/Designs/ChunkGraphBuilder.rtf,v $
$Revision: 1.1.1.1 $

$Date: 2004/04/14 13:42:40 $

$Name: $

$Author: catmandew $

*#** empty log message ***

$Source: /cvsroot/wgs-assembler/doc/Designs/ChunkGraphBuilder.rtf,v $
$Revision: 1.1.1.1 $

$Date: 2004/04/14 13:42:40 $

$Name: $

$Author: catmandew $

	1Overview
	2Design
	2.1OVL file input
	2.2G0 graph: Undirected graph of all fragment reads and fragment overlaps
	2.3G1 graph: Contained fragment read and Containment overlap marking
	2.4G2 graph: Essential overlap marking
	2.5G3 graph: Chunk graph creation
	2.6Statistical Unique/Repeat Classification

	3Chunk Graph Analysis
	4Global Data Structures
	5Optimization
	6Limitations

