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CHUNK GRAPH WALKER DESIGN (draft)

Overview

The goal of chunk graph walking is to find a consistent set of paths through the chunk
graph which maximizes the inclusion of chunks and essential overlap edges while
minimizing the number of clone mate constraints which are violated. The chief strategy
will be to use clone mates to navigate the chunk graph. This means that clone mate
information will be used to choose between alternate branches in the chunk graph for any
given path. The chunk graph will be extended to include mate edges between every pair
of chunks which contain one member each of a clone mate pair. There will not exist a
mate edge for every clone mate pair because a consistent set of clone mate pairs between
the same pair of chunks will be combined into a single weighted mate edge. The mate
edge encodes the number of clone mate pairs consistent with this edge, the implied
orientation of the chunks (can use the same notation as for overlap edges), and the
possible distance range between the chunks (this can be either an implied overlap or gap).
The possible distance range is determined by taking the intersection of possible distance
ranges for each clone mate pair contributing to the mate edge (the distance range for each
clone mate pair is a result of the clone length distribution for a given library as initially
defined to the system in a distance message). The reader should note that there may be
more than one mate edge between a pair of chunks if the set of clone mate pairs between
the chunks are not all mutually consistent. A key component of the strategy is that
confirmed edges are highly reliable. A confirmed mate edge is a mate edge with at least
two underlying clone mate pairs. An unconfirmed mate edge can also be confirmed by a
consistent overlap edge in the underlying chunk graph. A further extension of
confirmation is that finding a path of any combination of overlap and mate edges which is
consistent with another unconfirmed mate edge confirms that mate edge.

At any point in the chunk graph walk the problem can be viewed as making a path
extension decision in one direction based on the mate and overlap edges going in that
direction from the current partial path. The algorithm for choosing the path extension will
be primarily greedy relying on the assumption that confirmed mate edges are highly
reliable. Unfortunately, the path extension algorithm also relies upon being able to label
chunks as repetitive (used in more than one path) or unique (used in only one path) and
this labeling is not as robust as confirmed mate edges. The initial labeling of the chunks
will rely on a combination of arrival rate statistics within the chunk and type and position
of branch points within the chunk. The arrival rate statistic gives a precise maximum
likelihood ratio for the probability of a chunk being unique versus repetitive but the
separability of this statistic is poor for short chunks and low coverage levels. The branch
point patterns are more qualitative but help when the arrival rate is ambiguous. It is not
clear what level of coverage will be necessary for this algorithm to have much success. It
is also not clear how good the chunk labeling needs to be or what the ratio of false
positive to false negative unique chunk labeling will be optimal for the algorithm.



Assembly Team Doc Celera CONFIDENTIAL

The path extension algorithm uses the confirmed mate edges and chunk labeling in the
following way: first only the mate edges out of unique chunks are used because repeat
chunks can be on multiple paths and hence have mate edges to multiple paths which does
not help us extend the current path with confidence, second only confirmed mate edges
are used to extend the path because these are highly reliable, and finally, if confirmed
mate edge conflicts arise then the algorithm attempts to backtrack and relabel the chunk
causing the conflict from unique to repeat. The seeding chunk for path extension will be
the chunk with the highest uniqueness score because the algorithm works best starting
from correctly labeled unique chunks.

Each chunk will also be checked for internal clone mate consistency and suspicious
chunks will be relegated to the end of the queue for path extension.

Memory Usage

The major memory consuming data structures will be for the extended chunk graph which
includes chunks, overlap edges, and mate edges.

Interface

The input to the chunk graph walker consists of messages/data: clone mate messages
specifying clone mate pairs, distance messages specifying the statistics of clone lengths
for a given library, and chunk graph messages of types to be determined specifying the
chunk graph (chunks and chunk overlap edges). The chunk information must specify the
location within a chunk of every fragment (this is complicated if fragments are allowed to
be in multiple chunks). In addition, information about chunk uniqueness such as the
maximum likelihood arrival rate statistic and branch points must either be explicitly
passed to or computed by the chunk graph walker.

The structure of the chunk messages is still being defined but more importantly the
content of the chunk needs to be specified. The chunk could simply be defined by the set
of essential edges from the overlap graph internal to the chunk. The chunk graph walker
needs to have coordinate ranges for the endpoints of all the fragments making up a chunk
(coordinate ranges due to the uncertainty of the final alignment). These coordinate ranges
can be passed to or computed by the chunk graph walker.

The output of the chunk graph walker is a set of paths through the chunk graph. The
chunk graph walker must also pass through any relevant messages to the next module
such as clone mate messages. Currently, the next module is the repeat separator/resolver.

Design

For now it is assumed that the chunk graph builder is responsible for the following steps:
maximum likelihood ratio of arrival rate statistic for chunk uniqueness labeling, branch
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point labeling of chunks, and coordinate range representation of fragment positions
within chunks. This leaves three major tasks for the chunk graph walker: building the
extended chunk graph by adding mate edges, checking for clone mate consistency within
chunks, and finding paths through the chunk graph.

Building the extended chunk graph should be straightforward. For each pair of chunks
which contain one member each of a clone mate pair construct a mate edge between these
chunks. The mate edge specifies the orientation of the chunks with respect to each other
and the distance range between the chunks. There may exist more than one clone mate
pair between a given pair of chunks. In this case the clone mate pair must be checked for
consistency with any existing mate edge. If it is consistent then the mate edge is modified
to include the new clone mate pair, otherwise a new mate edge is created. Clone mate
pairs are consistent for chunk pairs if they give the same chunk orientation and their
distance ranges overlap. A special note is needed for fragments which may be placed in
multiple chunks. These fragments only occur because they are contained in at least one
other fragment and are part of a repeat. These fragments should not be used in the
determination of mate edges because they violate the assumptions made later about mate
edges (one such assumption is that all mate edges emanating from a unique chunk will
terminate on chunks along a single consistent path with the exception of chimeric mate
edges — we can obviously not rely on this being true for any mate edge based on a
fragment which can be placed in multiple chunks).

Checking for clone mate consistency within a chunk is also straightforward. Each
fragment within a chunk whose clone mate should lie within the chunk but does not is an
inconsistency ( this can be extended to include clone mates which should overlap with the
chunk but do not). A threshold based on a probabilistic model of how often clone mate
constraints should be violated due to chimeric clones will be used to label inconsistent
clones. In addition, a different threshold can be used for two special cases: inconsistent
clones in the same region and confirmed inconsistent clones (these are confirmed mate
edges which should have an overlap edge between the same pair of chunks but do not).

The first step in constructing a path through the chunk graph can also be thought of as a
verification of a chunk’s labeling as a unique chunk. This could in fact be an initial pass
through all of the chunks if an efficient way to store and access the results is used so that
the computation does not have to be repeated. This chunk verification is a check of the
consistency of the mate edges emanating from a single chunk based on the assumption
that the chunk is unique which infers that all nonchimeric mate edges should fall along a
single path. In practice this means that all confirmed mate edges (highly unlikely to be
chimeric) must form a consistent path and that there also not be too many unconfirmed
mate edges (using a statistical model of chimeric clone mate pairs) that do not fall along
this consistent path.

A path can be thought of in at least two ways: as an ordering (possibly partial) of chunks
and/or a range of coordinates for each chunk relative to some initial chunk which implies
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an ordering. The initial path construction step/chunk uniqueness verification can be
thought of as constructing a coordinate range representation of a path relative to the initial
chunk based on mate edges incident to that chunk. We fix the starting coordinate of the
initial chunk s, equal to 0 and the final coordinate f. to a range based on the length and

length variation of the initial chunk. For each chunk j with a mate edge to initial chunk 1
we can calculate coordinates s; and f; based on the length and variation of mate edge m,

and chunks ¢; and ¢;. We can sort this list of start and final coordinates for each chunk by

the start coordinate and then quickly search if any chunks have a potential overlap by
checking for each ¢; with s; and f if there exists a ¢, with s, where s, <=5, <f -

min_overlap. We can then quickly check for the existence of these potential overlap edges
in the chunk graph. We will also need to explicitly check for overlaps missed by the
overlapper module at this point. For each overlap found we will form an extended chunk
(or echunk) which will have similar properties to a chunk but which will also have
internal coordinates that specify where each constituent chunk falls within the echunk.
The relative coordinates of the echunk within the path will be inferred from the
constituent chunks relative coordinates.

Any chunks which had unconfirmed mate edges with the initial chunk c, but were found

to have at least one consistent overlap with another chunk are now considered to be
confirmed as well (so by definition all echunks are confirmed). There is one important
exception to this rule. If an overlap with the initial chunk ¢, would not occur if the

fragment reads which formed the unconfirmed mate edge were removed then this mate
edge is still unconfirmed (and the echunk formed by this overlap will be dissolved). The
reason for this is that there must be independent confirmation to label a mate edge as
confirmed or in other words a single clone is not allowed to confirm a mate edge. We will
now check to see if all confirmed chunks (chunks with confirmed mate edges to ¢,) and
echunks (confirmed via overlap) can be placed consistently along a single path (note we
will not worry about conflicts with unconfirmed chunks unless the number of conflicts
becomes too high). For the rest of this discussion we will not distinguish between chunks
and echunks except when necessary and the words chunk and chunks should be
considered to mean both chunks and echunks unless explicitly specified otherwise. The
problem now is to see if a set of chunks with a given set of starting and final range
coordinates and minimum length coordinates which are known to not overlap by more
than some minimum overlap length can be placed (coordinates assigned) with out
violating any of these constraints. This problem is easy if the coordinate ranges of all the
chunks are never contained in another coordinate range — for ¢, ¢, if s, <s; then f, < f,

because we can just start with the smallest s, and for each s, in increasing order shift the
chunk ¢, as far left as possible without causing an overlap we know does not exist until we
have a consistent set of coordinates for all of the chunk or we violate the f,_ constraint for
some chunk. For contained coordinates where chunk c,’s coordinate range contains chunk
¢,’s coordinate range the choice is not so simple because there are four possibilities in
trying to order the two chunks: first there may be no way to place the two chunks without
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violating the no overlap rule, second we may be able to place chunk ¢, either to the left or
the right of ¢, third we can place ¢, only to the left of ¢, or fourth we can place ¢, only to
the right of ¢,. We can proceed for the four cases as follows: case one we know we have a
conflict and can quit, case two we choose the placement of ¢, which results in the
leftmost placement of the two chunks combined which should always be placing ¢, to the
left of ¢, case three and case four we have no choice since only one placement is valid.

The real problem arises when we have nested contains and we need to keep track of all
possible choices for case two in case we need to backtrack based on a later constraint. The
way to implement this backtracking is to satisfy the most deeply nested constraints first
and work our way up. In theory this could lead to an exponential explosion but in practice
the amount of nesting should be minimal and case two nesting should be even rarer.

A better way to formulate the above algorithm is as a partial ordering on the chunks
followed by a topological sort. First for each chunk ¢, we see if ¢, can possibly be placed

before each chunk ; based on their range coordinates ((s,f;) and (sj,fj)), minimum Sizes
(m, and mj), and minimum allowed overlap (min_overlap). If (s, + m, — min_overlap) < (fj
—m,) then we will define ¢, < c,. If when we compute this we find that neither ¢, < ¢, nor ¢,
< ¢, then we have a conflict and cannot find a single consistent path. If we find both ¢, < ¢
and ¢ <c then we cannot determine the relative order between these two chunks and we
ignore both relations. Otherwise, either ¢, < ¢, or ¢ <c but not both are true and we have

defined a partial order on the chunks. We now proceed basically as outlined above, where
we start with the leftmost chunk and shift it as far as possible to the left then shift the next
chunk as far as possible to the left without producing an overlap conflict and make sure as
we proceed that we do not have a coordinate range conflict. If no conflicts arise there
does exist a single consistent path for this set of chunks. The only complication is when
the topological sort does not produce a total ordering but has ambiguity between some
chunks. For these unordered sets of chunks we need to find the leftmost unconflicted
ordering. We could just check each possible permutation of the set of chunks and keep the
leftmost unconflicted one. Preferably, we can predict an ordering of the permutations by
which will give the leftmost result and then check them in this order for conflicts so that
when we find an unconflicted one we can quit. Several rules hold and can be proved by
contradiction. First some terminology, relabel the topologically unordered set of chunks
from 1 to n such that s, <=s, <= ... <=s_and then use the same conventions as before

and define P =p p,...p, to be a permutation of the chunks. We will say P is unconflicted

if by doing the leftmost shifting test on P we do not have any overlap or range conflicts
and we will call the resulting rightmost coordinate of this leftmost compaction P.. For any

unconflicted P where p_not equal to ¢ and P, <=1f we can construct an unconflicted P’
with P’ = P.. This is easy to see by just taking p, = ¢_and constructing P’ =p p,...p,_
Pi.i---P,P- Wecanslide p,,...p, by m_to left because no starting coordinate violations
will occur because s_is the largest starting coordinate for this set of chunks and p, = ¢, so
P..;---P, Will all have start positions > s . Now we just tack p, onto the end which will not
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violate the final coordinate constraint for ¢ because P, <={ . Recognizing that any P
ending in p. =¢_has P, <={ , we can conclude that any P ending in p_ = ¢_is more
leftmost than one that does not. By induction we can make the argument that you always
want to try the next untried permutation which — well maybe not I'm still working on it. It
is clear that if you can order ¢ c,...c_such thats <=s,<=...<=s and f, <=1, <= ... <=

f then the identity permutation P = ¢ c,...c_always has the smallest P, — the proof by
contradiction is very similar to the one above.

There is one obvious decomposition of the problem which is to split the path anywhere
where there is guaranteed to be a gap. Formally, if we order the chunks such that s, <=,

<= ... <=s, then we can partition the problem into two subproblems ¢ c,...c; and

C;,Cjyp---C, When for all f; i <= j, f; — min_overlap <s,,,. Once you have decomposed the
problem in this way as far as possible and for the subproblem again renumbered and

ordered the chunks such that s, <=5, <= ... <=s_there are some obvious
constraints/bounds on being able to find an unconflicted solution. One bound is that s, +
the sum of m, over 1 =1 to n— (n-1) * min_overlap < max (f). We can actually order the

final coordinates in decreasing order and apply this bound recursively after removing the
chunk with the largest final coordinate each time. This bound actually has to hold for any
subset of the chunks and might be worth computing for every contiguous subset. The

DAG implied by the partial order defined above without transitive edges removed can be
used to compute this bound at all interior nodes for ordered subsets. We can try to decide
on the tightest bound for any subset of chunks. One observation is that if s, + the sum of

m, over i = 1toj—j* min_overlap <s,  then the bound s, + the sum of m, over i = (j+1)
to n — (n-j-1) * min_overlap < max (f)) is a tighter bound. In fact these bounds are just a

way of formalizing what the leftmost test is. We can use these bounds and a similar one —
if ¢, < G thens, + m, + m, — min_overlap <= fJ — and the DAG to refine all of s, and f. for

each chunk c.. Conflicts would show up when s, + m, > f.. Once the range coordinates are

refined we may need to add new edges to the DAG to reflect pairs that used to be
unordered but now can be ordered or we may even find pairs that used to be unordered
but now conflict. We can then repeat doing the refinement and adding edges until we find
a conflict or stabilize (note that we are guaranteed to stabilize in finite time since the
ranges always are reduced and the number of edges which can be added to the DAG is
finite). I cannot yet prove that if we stabilize without finding a conflict that there does
exist an unbranched consistent path but I am starting to think this might be provable. If
nothing else this algorithm seems worth pursuing just to be able to refine the range
coordinates.

After some preliminary research the determination of a consistent path under the above
formulation appears to be NP-hard/complete but I am not yet positive about the existence
problem. What is also clear is that if a total or nearly total ordering can be determined
then the problem is merely quadratic. I think a lot of our actual problems will be highly
ordered and hence solvable but one way to make this even more true is to increase the
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number of chunks which are partially ordered with respect to each other. The first thing
we can do is check for the existence of mate edges between pairs of chunks not involving
the initial chunk which are consistent with the range coordinates. If one of these mate
edges exist it will immediately give a partial ordering of the pair of chunks and might
refine the range coordinates for the chunks as well. This approach is not without pitfalls
because scenarios exist where the inference drawn may be incorrect due to one or both
chunks being nonunique and the mate edge being consistent but not representative of the
true path — our current thinking is that these scenarios have low probability and the gain
in ordering out weighs the risk. The next step could be to find all chunks in the chunk
graph which connect any pair of our current set of chunks consistent with the range
coordinates. These very short paths in the chunk graph could be found very efficiently but
we must remember they suffer the same pitfalls (not clear whether the risk is higher or
lower than mate edges between pairs of chunks). Either of these can be extended to
include longer path searches in the extended chunk graph to try to determine a partial
order between pairs of chunks but the efficiency of the search will decrease and the risk
might increase.

At this point I would plan to proceed with the two additional ordering steps given above
and then construct the DAG for the partial order and iterate twice to refine the DAG as
discussed above. If we have a total order with no conflicts we’re done. If we have a
conflict we’re done. Otherwise we can use a simple heuristic to try to find an order that
satisfies the DAG and the constraints and if we do we’re done. Otherwise I would either
assume there are no conflicts or try to search the extended chunk graph to get a better
ordering. We can also choose to allow the extra ordering steps to confirm unconfirmed
chunks.

We can extend each chunk as described above into what we will call a chunk’s confirmed
scaffold (note this is only for unique chunks) composed of a partial ordering of
neighboring chunks and implied fuzzy coordinates with respect to the initiating chunk. At
this point we could pursue a greedy approach by either extending scaffolds from the most
unique remaining unextended chunk in the scaffold or by merging scaffolds based on a
similar criterion. A more elegant and perhaps insightful approach is to treat the scaffolds
as elements which can be overlapped based on their unique chunk content. Once we do
the overlapping we can produce an overlap graph and collapse this into a chunk graph for
the scaffolds. If our uniqueness labeling is correct and discounting structural
polymorphisms and chimeric confirmed mate edges there should be no branches in this
chunk graph. The presence of branches would alert us to regions where we need to look
for problems in our assumptions or the data.

The first challenge is to define what an overlap is between scaffolds. A minimum
requirement is that the two scaffolds have at least one unique chunk in common and this
condition should make the search for potential overlaps efficient. The second requirement
is that the chunks the two scaffolds share have the same relative orientation and ordering
in both scaffolds. These two requirements may be sufficient but at least two others should
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be considered: that the relative distances between shared chunks be approximately the
same and that merging the two scaffolds does not result in any obvious conflicts as
defined previously. In any case, the two scaffolds should be merged and links between
unshared chunks in the two scaffolds should be used to help refine any ambiguities in the
partial orders of the two scaffolds and confirm any unconfirmed mate edges. There are
two possibilities for characterizing the implied overlap of the merged scaffolds: the length
of the overlap and overhangs can be estimated from the fuzzy coordinates which will also
imply the type of the overlap (contained, normal/prefix/suffix dovetail), or just the
implied partial order of the merged scaffolds can be used to determine just the type of the
overlap. Due to the nature of scaffolds and unique chunks being used to determine
overlaps we do not expect that there can be multiple legitimate overlaps between the same
pair of scaffolds and will not allow these to occur. Under this assumption the type of an
overlap alone is sufficient to perform transitive edge removal. One concern however is
that the gaps inherent in the scaffolds if large enough to contain another scaffold or part
of a scaffold can lead to branches in the collapsed graph which only exist because real
overlaps between scaffolds are not detected due to these gaps.

Statistics and Testing

This section delineates statistics that can be collected and tests that can be made
especially for simulated data that can be used to assess the potential success of walker
strategies and the correctness of clone mate information and walker algorithms. The
statistics will mostly involve clone mates/mate edges since that is the primary basis of the
walker algorithms. There are some obvious statistics to provide histograms for on a per
chunk edge basis and possibly a per chunk basis which can be computed for the enhanced
chunk graph before walking commences: internally consistent chunks, confirmed mate
edges, unconfirmed mate edges, all mate edges, sum of chunk sizes for
confirmed/unconfirmed/all mate edges, maximum extension off of the edge of a chunk
via confirmed/unconfirmed/all mate edges, and ratio of extension filled (sum of chunk
sizes divided by maximum extension) for confirmed/all chunk edges. These statistics
would be grouped into several classes such as true unique chunks, true repeat chunks,
chunks within a certain band of the uniqueness score, chunks within a certain size band,
and/or some combination of these attributes. Some clone mate statistics we can collect
are whether there are any confirmed mate edges which are the result of two or more
chimeric clone mate pairs, there are any chimeric clone mate pairs which participate in
legitimate mate edges, and the number of unconfirmed mate edges which are real versus
chimeric. We can also do some quick correctness checks based on the enhanced chunk
graph such as whether the distance bounds on confirmed/unconfirmed/all mate edges are
accurate.

We can make the above statistics more accurate and gather some additional statistics for
unique chunks which we can extend as described above based on the partial ordering and
fuzzy coordinates which result.
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Limitations
Currently, the chunk graph walker will rely only on overlap edges and mate edges to

traverse the chunk graph. In the future microhetergeneity within repeat chunks could also
be used when other information is insufficient.

Status

Design phase.

Component Architecture and Unit Dependencies

from correctly labeled unique chunks.
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