
Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 1 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

ASSEMBLER PIPELINE I/O CONVENTIONS

The assembly group rapidly prototypes pipeline components and then evolves them into robust
components, essentially an organic software development strategy. To this end, the various modules can
communicate via either a simple ASCII-based encoding of the pipeline messages or a more compact and
efficient binary representation under production situations. The idea for the ASCII encoding is that it is
easy to read by a human (aiding debugging), but of such a form that it is be trivial to parse.

This document is the defining document for the precise information content of every message that
flows through the Celera Assembler pipeline. As such it contains precise message specification for the
input and output of the assembler given in the Celera Assembler document. Often the messages here will
contain precise implementations of loosely defined items such as lists in the overview document, whose
purpose is only to convey the information content of the external input and outputs. The document
describes the messages in order of their introduction along the assembler pipeline.

Note carefully that we adopt the convention that sequence intervals are specified as a pair of positions
within a sequence and positions are the points between symbols of the sequence. The leftmost position is
numbered 0 so that for example, (0,4) specifies the first 4 symbols of a sequence, (2,2) specifies the
position between the second and third symbols, and so on.

1. External Inputs:
We start with the simple message for distance and work our way up. The format is called 3-code

because every field name and message type name is compressed to a 3 letter abbreviation, with the added
convention that type names are all capital-letters and field names are all lower-case letters. A record is
encoded across several lines of input where the first line has a ‘{‘ in column 1 and the last line consists
entirely of a ‘}’ in column 1. The 3-code for the message type name is in columns 2-4 of the header line,
followed immediately by a new-line. The lines between the header and tail encode the fields of the record.
Each field-line has the 3-code for the field in columns 1-3 and a ‘:’ in column 4, followed immediately by
the relevant data in columns 5 to the end-of-line. For the distance message below, the Pascal data structure
is given at left and the corresponding 3-code is given at right. The encoding of the data for the field is
given by specifying the scanf UNIX format that would correctly read the input. Thus, for example, ‘%ld’
reads a long and ‘[AD]’ reads any of the two characters. By convention scalar values are encoded as a
single capital letter and the sequence of letters correlates with the sequence of value names in the scalar
definition. Thus, for example, ‘A’ denotes ‘Add’, and ‘D’, ‘Delete’.

Distance_ID, Fragment_ID, Screen_Item_ID: int64

DistanceMesg: {DST
record
 action: scalar (AS_ADD,AS_DELETE) act:[AD]
 accession: Distance_ID acc:%ld
 mean: float32 mea:%f
 stddev: float32 std:%f
end }

So an example of a distance message might look like:

{DST
act:A
acc:1000803
mea:2000.
std:333.3
}

Note new
introduction.
Document is
now defining
document for
message
passing
substrate of
entire system.

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 2 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

Moving on to the next example message, we consider the screen item record. The new feature
illustrated by this record is the way in which arbitrary length strings, needed for the ‘Source’ and
‘Sequence’ fields, are encoded. In the translation specification at right for these fields, the symbol ‘↵’
denotes a new-line symbol and we take the liberty of using regular expression syntax to express that the
input is a series of new-line terminated strings ending with a line containing a ‘.’ in column 1. The encoded
string is the concatenation of all the characters save the new-lines and the terminating period. The relevance
field is used to determine which functions should or should not be performed with each screen item or
fragments matching the screen item. For ubiquitous repeats, a relevance value of 1 instructs the overlapper
to take regions of matching fragments into account when computing overlaps.

ScreenItemMesg: {SCN
record
 type: scalar (AS_UBIQREP,AS_CONTAMINANT) typ:[UC]
 accession: ScreenItem_ID acc:%ld
 repeat_id: [0…Num_of_Repeat_Types-1] rpt:%d
 relevance: int32 rel:%d
 source: "description of data source" src:↵(%[^\n]↵)*.
 sequence: string(char) seq:↵(%[^\n]↵)*.
 variation: float32 in [0,.1] var:%f
 min_length: int32 mln:%d
end

So an example of a screen item message might look like:

{SCN
typ:C
acc:1099993
rpt:3
rel:0
src:
Anything you’d like to put here is cool!
.
seq:
aaaaaaaaaaaaaaaaaaaaaaaaa
ccccccccccccccccccccccccc
ggggggggggggggggggggggggg
ttttttttttttttttttttttttt
.
var:3.2e-2
mln:40
}

We conclude with the remaining three primary input types, fragment records, link records, and repeat
records, given immediately below. The only remaining matter to discuss is the encoding of quality values
in the fragment records. Phred quality values are integers in the range [0,60]. An encoding based on a
series of, say blank-separated integer constants, is too space consumptive for even our modest prototyping
requirements, so we choose to encode these numbers as a series of printable ASCII characters. To wit, a
value i is mapped to the ASCII symbol ‘0’+i. Thus a sequence of Phred numbers is mapped to a sequence
of characters and encoded in a 3-code record as a string. Note carefully that the string terminating symbol
‘.’ is less than ‘0’ in the ASCII collating sequence and thus cannot occur in the Phred encoding sequence.

RepeatItemMesg: {RPT
record
 repeat_id: [0…Num_of_Repeat_Types-1] rpt:%d
 which: string(char) wch:%s
 length: int32 len:%d
end }

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 3 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

The primary input to the assembler is a fragment message, either for a read or a guide. Guides are further
categorized as either being (a) BAC-ends, (b) pseudo-reads from unfinished BACs, (c) pseudo reads from
finished BACs, and (d) STSs. The difference between the messages for reads versus guides are as follows.

1. Every guide has an associated locale whereas this field is undefined for reads. The interpretation of the
locale is different for each kind of guide, but is always expected to be a 64-bit UID produced by the
Celera database. For the BAC-based guides it is a UID assigned to the particular BAC from which the
guide came. The assembler does not care about the nature of this UID other than that a distinct integer
be given to each BAC. If over time, end reads, then contigs, and finally finished sequence for a BAC
become available, the same BAC number should be given to the associated guides for that BAC. For
an STS guide, a distinct locale number should be assigned to each bin formed when a sufficiently high
LOD score is used to order STSs. We suggest 6.

2. Every read has a quality vector and a clear range whereas guides need not. In such a case the quality
vector field is NULL and the clear range is the entire fragment. By convention, all fragment sequence
coordinate and interval references generated by the assembler are relative to the clear range.

3. Each contig of an unfinished BAC and each finished BAC is assumed to have been partitioned into a
set of neatly overlapping pseudo-reads that are given as guides to the assembler. For these pseudo-
reads, the assembler will expect to be given the interval of the underlying BAC from which the
pseudo-read was excised in the locpos interval of the record. This field is defined only for unfinished
and finished BACs. In the case of the several unordered contigs for a given unfinished BAC, simply
assign a disjoint interval to each contig and then give the position of each pseudo-read of a contig with
respect to the assigned interval.

Note carefully that we adopt the convention that intervals are specified as a pair of positions within a
sequence and positions are the points between symbols of the sequence. The leftmost position is numbered
0 so that for example, (0,4) specifies the first 4 symbols of a sequence, (2,2) specifies the position between
the second and third symbols, and so on.

After the relevant fragments have been added to the system one may then add (or delete) pairwise distance
constraints or links between them. A link message always contains the type of link being added or deleted
and the two fragments involved. If a link is being added then one also needs to specify the time of entry, a
reference to the distance record specifying the distance range between the fragments, and a scalar
indicating whether the fragments are in the same, opposite orientation, or unknown orientation. Note that
mates and BAC guides are always in the opposite orientation with respect to each other. The distance
constraint always refers to the distance between the 5’ end of the two fragments, regardless of orientation.
Links are divided into six categories according to the source of the link. AS_MATE links are for mated
pairs of 2K, 10K, 50K, and transposon library end reads from the Celera sequencing pipeline, from external
sources of whole genome shotgun sequence, or from UBAC fragments that were sequences from opposite
end of subclones. AS_BAC_GUIDE links are between end-sequenced BACs and AS_STS_GUIDE links
are between paired STSs. The AS_REREAD link, permits one to specify that two reads were sequenced
from the same end of an insert. These are rereads that were resequenced for some reason, e.g. the PCR-
prep encountered a mononucleotide repeat and stuttered, and thus was resequenced with a plasmid prep. In
this case neither the distance or orientation fields convey any information. The last two link types model
user input constraints and may be between any pair of fragments in the system. The MAY_JOINs
represent single links that may be incorporated if there is not conflicting information, and the
MUST_JOINs represent infinitely weighted links that will be followed if at all possible. Finally, note fully
that there should be exactly one distance record for each insert library, even if the library was designed to
have insert sizes equal to that of another library. The reason for this is that the assembler will be
empirically determining a distribution of observed mate distances and these distributions will be different,
even for libraries designed to have the same mean distance

The distance between guides and mates are specified in distance records that are passed to the assembly
system as records requesting that a given distance entity be added or deleted. The message record specifies
the action, the ID of the distance entity, and (in the case of insertion) the normal distribution from which
the distances were sampled. The field mean gives the mean of the distribution and stddev gives the standard

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 4 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

deviation. Thus, for example, 99% of all links referring to a particular distance message will be of length
in [mean-3stddev,mean+3stddev].
The orient field specifies the relative orientation of the two fragments. Links representing sequence of
opposite ends of some type of insert (AS_MATE or AS_BAC_GUIDE) must specify an AS_INNIE
orientation (3’ ends are adjacent) except in the case of mated pairs of reads from a transposon library,
which must specify an AS_OUTTIE orientation. Specifying an AS_UNKNOWN orientation is equivalent
to specifying 4 links, each with one of the possible orientations.

FragMesg: {FRG
record
 action: scalar (AS_ADD,AS_DELETE) act:[AD]
 accession: Fragment_ID acc:%ld
 variant of action:
 AS_ADD:
 record

type: scalar (AS_READ,AS_EXTR,AS_TRNR, typ:[RXTELUFS]
 AS_EBAC,AS_LBAC,AS_UBAC,
 AS_FBAC,AS_STS)

 locale: Locale_ID loc:%ld
 locpos: SeqInterval pos:%d,%d
 source: "description of data source" src:↵(%[^\n]↵)*.
 entry_time: time_t etm:%d
 sequence: string(char) seq:↵(%[^\n]↵)*.
 quality: string(bytes) qlt:↵(%[^\n]↵)*.
 clear_rng: SeqInterval clr:%d,%d
 end
 end
end }

 SeqInterval: record bgn, end: int32 end

LinkMesg: {LKG
record
 action: scalar (AS_ADD,AS_DELETE) act:[AD]
 type: scalar (AS_MATE,AS_BAC_GUIDE, typ:[MBSRYT]

AS_STS_GUIDE, AS_REREAD,
AS_MAY_JOIN,AS_MUST_JOIN)

 frag1: Fragment_ID fg1:%ld
 frag2: Fragment_ID fg2:%ld
 variant of action:
 AS_ADD:
 record
 entry_time: time_t etm:%d
 distance: Distance_ID dst:%ld
 orientation: scalar (AS_NORMAL, AS_ANTI
 AS_INNIE,AS_OUTTIE,
 AS_UNKNOWN) ori:[NAIOU]
 end
 end
end

Audit Records:

Every pipeline transmission batch will have an audit record as its first item. An audit record will

consist of a list of the agents that produced the batch in the sequence they were applied, and for each agent
the name of the agent, time of completion, version number, and a possibly empty comment are specified:

AuditMesg: {ADT
 list of AuditLine (<ADL-record>↵)*.
 }

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 5 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

AuditLine: {ADL
record
 name: string who:%s
 complete: time_t ctm:%d
 version: string vsn:%s
 comment: string com:%s
end }

2. GateKeeper:

The assembler modules require consecutive IDs beginning at 1 for efficient indexing of internal and
disk-based data structures. These 32-bit “IID’s” are assigned and added to every record containing a UID
supplied by the external DMS with the exception of Repeat_IDs which already have this property. Thus
the GateKeeper module augments all input messages -- FRG, LKG, SCR, and DST -- with internal ID
assignments and passes them on as IFG, ILK, ISN,and IDT messages. These messages are identical to the
input counterparts save that:

All acc-fields that contain external references are converted to (External,Internal) accession
number pairs, encoded in 3-format as “(%d,%d)”. In the corresponding C-structs, the single field,
say “<X>” to the external ID, is replaced with two fields “e<X>” and “i<X>” to the appropriate
sized ints.

All other fields that contain external references are converted to internal accesion numbers
encoded in 3-format as "%d" and their field name, "X" becomes "i<X>".

The Gatekeeper further checks all input for semantic consistency as described in the defining document for
that stage.

3. Repeat Tagger/Contaminant Screener:

The URT/URC module consumes ISC messages, passes IDT messages through unalterred, and adds to
the IFG message. The consumed ISC messages are recorded in a screen index store on disk. To avoid any
ambiguity the augmented fragment records are called “ScreenedFragMesg” and their 3-code header is
“SFG”. The new information is a sequence of ScreenMatch records incorporated into the fragment
message as follows:

IntScreen_ID: int32

ScreenedFragMesg: {SFG
record
 “As before”
 clear_rng: SeqInterval
 screened: sorted list of ScreenMatch scn:↵<ISM-record>*.
 “As before”
end }

Each match instance is represented by an IntScreenMatch record that is defined below. Note that
IntScreenMatch items are always enclosed within the FragMesgScreened record, therefore a Fragment_ID
field is not needed.

IntScreenMatch: {ISM
record
 where: SeqInterval in fragment whr:%d,%d
 iwhat: IntScreen_ID wht: %d
 repeat_id: [0…Num_of_Repeat_Types-1] rpt:%d

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 6 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

 relevance: int32 rel:%d
 portion_of: SeqInterval pof:%d,%d
 direction: scalar (AS_FORWARD,AS_REVERSE) dir:[FR]
end }

4. Overlapper:

The Overlap module stores screened fragments in a fragment store, passes on relevant fragment
information to the subsequence stages in an OFG fragment message, and adds overlap messages (OVL) to
the stream. An OFG fragment message is exactly an SFG save that:

(1) the type name is OFG instead of SFG

(2) the seq and qlt fields are absent.

Overlaps between fragments are described in “OverlapMesg” records as follows. It would be preferrable if
the overlaps for a given fragment followed its OFG message and if that fragment were the A_frag for the
relevant overlap records.

IntFrag_ID: int32

OverlapMesg: {OVL
record
 aifrag: IntFrag_ID afr:%d
 bifrag: IntFrag_ID bfr:%d
 orientation: scalar (AS_NORMAL,AS_INNIE,
 AS_OUTTIE,AS_ANTI) ori:[NAIO]
 overlap_type:
 scalar (AS_DOVETAIL,AS_CONTAINMENT,AS_SUPERREPEAT) olt:[DCM]
 a_hang: int32 ahg:%d
 b_hang: int32 bhg:%d
 quality: float32 qua:%f
 min_offset, mno:%d
 max_offset: int32 mxo:%d
 polymorph_ct: int32 pct:%d
 delta: string(int) del:↵((%d)*↵)*.
end }

5. Unitigger:

The Unitigger absorbs the OFG and OVL records emitted by the Overlapper. It passes ADL, ILK, and IDT
messages through unalterred. It chunks fragments into unitigs and maintains a store of all fragment
overlaps so that it can do this incrementally. The Unitigger further invokes the Consensus Module through
a procedural interface to produce consensus sequences for each unitig and then computes branch points for
each unitig. The Unitigger emits the resulting annotated unitig graph, as a series of IntUnitigMesg
messages modeling the vertices and as a series of UnitigOverlapMesg messages modeling the edges.

IntChunk_ID: int32

IntUnitigMesg: {IUM
record
 iaccession: IntChunk_ID acc:%d

We add Anti's here
for uniformity
throughout.

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 7 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

 source: "description of data source" src:↵(%[^\n]↵)*.
 coverage_stat: float32 cov:%f
 status: scalar (AS_UNIQUE,AS_CHIMER,
 AS_NOTREZ,AS_SEP,
 AS_UNASSIGNED) sta:[UCNSX]
 a_branch_point: int32 abp:%d
 b_branch_point: int32 bbp:%d
 length: int32 len:%d
 consensus: string(char) cns:↵(%[^\n]↵)*.
 quality: string(bytes) qlt:↵(%[^\n]↵)*.
 forced: boolean for:%d
 num_frags: int32 nfr:%d
 f_list: list of IntMultiPos (<IMP-record>↵)*
end }

IntMultiPos: record {IMP
 type: scalar (AS_READ,AS_EXTR,AS_TRNR, typ:[RXTELUFSu]

 AS_EBAC,AS_LBAC,AS_UBAC,
 AS_FBAC,AS_STS,AS_UNITIG)

 ident: union(IntFragment_ID,IntChunk_ID) mid:%d
 source: "description of data source" src:↵(%[^\n]↵)*.
 position: SeqInterval pos:%d,%d
 delta_length: int32 dln:%d
 delta: list of int16 del:↵((%d)*↵)*
end }

A Unitig record contains the following information:

1. A unique accession number assigned by the assembler. These are densely assigned starting at 0, but not

necessarily sequential.
2. The coverage statistic used to determine whether a unitig can safely be considered to be from a unique

region of the genome.
3. The assembler’s current status of the unitig is: AS_UNIQUE if the unitig is unique in terms of having a

high coverage stat and being longer than 1kbp or if the unitig is repetitive (low coverage stat or 1kbp
or shorter) and not placed in any scaffold; AS_CHIMER if the unitig represents a single fragment that has
been deemed chimeric; AS_NOTREZ if the unitig is repetitive and is placed in only one scaffold; and
AS_SEP if the unitig is repetitive and has instances in multple scaffolds. Note that a unitig with status
equal to AS_SEP is completely separated and might have gaps. This assignment is made by the
unitig/chunk graph walker. Initially the Unitigger assigns the value AS_UNASSIGNED to a unitig.

4. Each unitig has arbitrarily assigned ends, imaginatively called “A”/prefix and “B”/suffix. The ordering
of the essential edges internal to the unitig starts from the “A” end. Branch points are only interesting
if they occur relatively close to the end of a unitig, within AS_CGB_BPT_SEQ_LENGTH (1000)
bases. The magnitude of the a_branch_point and b_branch_point fields specify how far from the
respective unitig ends the branch point is located, and their sign gives the orientation of the branch
points. A value of 0 indicates no branchpoint, a plus sign indicates going from repeat into unique, and
a negative number designates transitioning from unique into repeat (never seen so far).

5. The length gives the gapped length of the consensus sequence for the unitig encoded in the
consensus field and also the length of the accompanying quality array, quality, unless it is a
NULL pointer in which case this field is absent.

6. If the consensus module had problems computing the Unitig’s consensus the forced field will be set
to TRUE to indicate potential quality problems in the consensus.

7. Finally, the multi-alignment of the unitig is encoded by a list of num_frags MultiPos records for
which the sum of their delta arrays is delta_total.

A MultiPos specifies the position of a fragment or unitig within the multi-alignment of a unitig (contig)

and a delta for aligning the item with the gapped consensus sequence. The position is specified as a
SeqInterval -- an ordered pair of integers. If position.bgn < position.end, then the fragment (unitig) is

I'm recommending
we tighten the
encoding of these:
the type is implied
by the list it is in.

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 8 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

oriented along the direction of the unitig (contig), otherwise it has reverse orientation. The exact nature of
a delta should be explained here!

A series of independent UnitigOverlapMesg messages specify unitig graph edges. Each edge identifies a
pair of unitigs and the orientation of the overlap between them . In this situation, the designers didn't
employ the Normal, Anti-Normal, Innie, and Outtie convention of the overlapper, but chose instead the
indicated scalar whose interpretation is as follows:

• AB_AB ‘N’ Normal
• BA_BA ‘A’ Anti-Normal
• AB_BA ‘I’ Innie
• BA_AB ‘O’ Outtie
The idea is that the letters on the left side of the underbar depict the orientation of unitig1 (using it’s A and
B ends) and the letters on the right side give that of unitig2.

The overlap_type specifies the relationship between the unitigs:
• AS_NO_OVERLAP ‘N’ No overlap
• AS_OVERLAP ‘O’ A dovetail overlap between two non-contained

unitigs.
• AS_TANDEM_OVERLAP ‘T’ Tandem overlap
• AS_1_CONTAINS_2_OVERLAP ‘C’ unitig1 contains unitig2
• AS_2_CONTAINS_1_OVERLAP ‘I’ unitig2 contains unitig1
• AS_TOUCHES_CONTAINED_OVERLAP 'M' A dovetail overlap between a non-contained

unitig and a contained unitig.
• AS_BETWEEN_CONTAINED_OVERLAP 'Y' A dovetail overlap between two contained

unitigs.
• AS_TRANSCHUNK_OVERLAP 'X' A transitively inferable dovetail overlap.

In the case of the containment overlaps, the are two independent orientations for each overlap
(the unitigs are either aligned in the same direction, or in opposite directions). By arbitrarily constraining
the containing unitig to be in the AB orientation, this boils down to the following constraints on orientation:
• AS_1_CONTAINS_2 overlap

AB_AB (Normal) or AB_BA (Innie)
• AS_2_CONTAINS_1 overlap

AB_AB (Normal) or BA_AB (Outie)

normal and innie, since the two unitigs are either aligned in the same orientation, or aligned with opposite
orientation. The overlap distance is specified as if the contained fragment was extended past the B end of
the containing fragment.

Unitig1
A B

A B

Overlap length

Unitig2

In addition, the best, minimum, and maximum overlap length between the unitigs is given. The minimum
and maximum are not equal in the case of a most edges induced by a small tandem repeat. However, all
such edges are not detectable just on overlap, and the CGB transitively infers when the overlapping parts of
an edge involve tandem satellites. This is set in the overlap_type field. The overlap_type field

New Drawing

Formatted: Bullets and Numbering
Unknown

Formatted: Bullets and Numbering
Unknown

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 9 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

is also used later, but in this context the AS_NO_OVERLAP and AS_TANDEM_OVERLAP value is never a
possibility.

UnitigOverlapMesg: {UOM
record
 chunk1: IntChunk_ID ck1:%d
 chunk2: IntChunk_ID ck2:%d
 orient: scalar (AB_AB, BA_BA,
 BA_AB, AB_BA) ori:[NAOI]
 overlap_type: scalar (AS_NO_OVERLAP,
 AS_OVERLAP,
 AS_TANDEM_OVERLAP,

 AS_1_CONTAINS_2_OVERLAP,
 AS_2_CONTAINS_1_OVERLAP,
 AS_TOUCHES_CONTAINED_OVERLAP,
 AS_BETWEEN_CONTAINED_OVERLAP,
 AS_TRANSCHUNK_OVERLAP
) ovt:[NOTCIMYX]

 source: "description of data source" src:↵(%[^\n]↵)*.
 best_overlap_length: int32 len:%d
 min_overlap_length: int32 min:%d
 max_overlap_length: int32 max:%d
 quality: float32 qua:%f
 polymorph_ct: int32 pct:%d
End }

6. Chunk Graph Walker:
Extented Unitig Graph:

The first task of the unitig/chunk graph walker is to extend the unitig/chunk graph by adding mate edges.
These edges connect unitigs that contain linked reads. The resulting graph, termed the Extended Unitig
Graph (EUG) consists of vertices that are Unitigs, and undirected edges in the form of Unitig Link Edges.
The CGW swallows the UnitigOverlapMesg and LinkMesg messages and emits Unitig Link Edges, as
follows:

IntUnitigLinkMesg: {IUL
record
 unitig1: IntChunk_ID ut1:%d
 unitig2: IntChunk_ID ut2:%d
 orientation: scalar {AB_AB, BA_BA,
 BA_AB, AB_BA} ori:[NAOI]
 overlap_type: scalar (AS_NO_OVERLAP,
 AS_OVERLAP,
 AS_TANDEM_OVERLAP,

 AS_1_CONTAINS_2_OVERLAP,
 AS_2_CONTAINS_1_OVERLAP)
 ovt:[NOTCI]

 is_possible_chimera: boolean ipc:%d
 includes_guide: boolean gui:%d
 mean_distance: float32 mea:%f
 std_deviation: float32 std:%f
 num_contributing: int32 num:%d
 status: scalar (AS_IN_ASSEMBLY,
 AS_POLYMORPHISM,
 AS_BAD,
 AS_CHIMERA,
 AS_UNKNOWN_IN_ASSEMBLY) sta:[APBCU]
 jump_list: list of IntMate_Pairs jls:↵(%d,%d↵)*
end }

IntMate_Pairs: record

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 10 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

 in1, in2: IntFrag_ID
 type: scalar (AS_MATE,
 AS_BAC_GUIDE, typ:[MBSYT]

 AS_STS_GUIDE,
 AS_MAY_JOIN,
 AS_MUST_JOIN)

end

The first four fields are identical in meaning to the corresponding fields of the UnitigOverlapMesg. The
only difference is that now the has_overlap field can take on the value AS_NO_OVERLAP as two unitigs
may be connected solely by links. If the number of contributing edges is two, and a single read is required
for both edges, then is_possible_chimera is set to true. This will happen if a read is part of a mate
in the other unitig and is also required for the unitig to overlap. If the edge includes a guide, the
includes_guide is set to TRUE. The mean_ and std_distance fields give the range of mean and
standard deviation of the distance separating the two unitig (a negative distance means the unitigs overlap).
The number of edges (read mates and a possible unitig overlap) contributing to the mate edge is given by
the field num_contributing. The status field, determined late in the process after a best scaffold has been
chosen, gives the status of the edge with respect to this assembly. Finally, the jump_list gives a list of
all mate pairs of fragments modelled by the edge. The length of the jump_list corresponds to the number of
contributing edges if overlap_type takes the value AS_NO_OVERLAP. Otherwise the length of the
jump_list will be num_contributing – 1.

Extended Contig Graph:

The CGW next outputs the extended contig graph. Contigs are ordered collections of Unitigs and
Surrogates that cover contiguous regions of the genome. A contig is composed of fragments from the
contained Unitigs, as well as “surrogates”. Surrogates are subsets of repeat Unitigs that are introduced to
span gaps in contigs that result from incomplete repeat fragment resolution in repeat Unitigs. Even where
no gaps are introduced in a contig, surrogates may be necessary to provide the necessary overlap ‘glue’ for
consensus. The need for surrogates is determined by the consensus module, and indicated in its output.

Following CGW, consensus expects Unitig and PreContig messages, with the ordering requirement that
any Unitig message referenced in a given PreContig message appears in the stream prior to its reference.
For each contig in the assembled layout, the Assembly module is expected to emit a PreContig message
that specifies the contig identifier, contig length, a count of fragments contained within the contig layout,
and a list of ElementPos messages, one for each such item. The position information for each item is
encoded as ElementPos.

In the event that consensus requires a surrogate for Unitigs that are separated (status AS_SEP) or
unresolved (AS_UNRESOLVED) it should avail itself of the previously computed consensus sequences for
the Unitigs. Unitigs marked as (AS_SEP) might need to do that if the contain gaps after being separated/
The use of surrogates should be reflected both in the quality values of the resulting consensus, and in the
list of surrogates in the output.

PreContigMesg: record {PCM
 iaccession: IntContig_ID acc:%d
 iscaff_id: IntScaff_ID sid:%d
 placed: boolean pla:%d
 length: int32 len:%d
 num_frags: int32 nfr:%d
 f_list: list of IntElementPos (<IEP-record>↵)*
 num_unitigs: int32 nou:%d
 unitigs: list of IntElementPos (<IEP -record>↵)*
end }

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 11 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

IntElementPos: record {IEP
record
 type: scalar (AS_READ,AS_EXTR,AS_TRNR, typ:[RXTELUFSu]

 AS_EBAC,AS_LBAC,AS_UBAC,
 AS_FBAC,AS_STS, AS_UNITIG)

 ident: union(IntFragment_ID,IntChunk_ID) lid:%d
 position: SeqInterval pos:%d,%d
end }

The sid field in the PCM message is a reference to the scaffold in which this contig has been placed, if any.
If the contig has not been placed, sid will be set to the sentinel value of –1. This sid is exceptional in that it
is the only forward reference to an undefined object in the assembler’s I/O spec. The scaffold that is
referred to by the sid must appear subsequently.

The placed field is true if this contig has been placed in a scaffold.

The edges in the contig graph are represented by Contig Link edges, that are direct analogs of the Unitig
Link Edges in the unitig graph. The only differences is in the objects being related.

IntContigLinkMesg: {ICL
record
 contig1: IntContig_ID co1:%d
 contig2: IntContig_ID co2:%d
 orientation: scalar {AB_AB, BA_BA,
 BA_AB, AB_BA} ori:[NAOI]
 overlap_type: scalar (AS_NO_OVERLAP,
 AS_OVERLAP,
 AS_TANDEM_OVERLAP) ovt:[NORT]
 is_possible_chimera: boolean ipc:%d
 includes_guide: boolean gui:%d
 mean_distance: float32 mea:%f
 std_deviation: float32 std:%f
 num_contributing: int32 num:%d
status: scalar (AS_IN_ASSEMBLY,
 AS_POLYMORPHISM,
 AS_BAD,
 AS_CHIMERA,
 AS_UNKNOWN_IN_ASSEMBLY) sta:[APBCU]
 jump_list: list of IntMate_Pairs jls:↵(%d,%d↵)*
end }

Mate-Distance Distribution Messages:

These messages are emitted to provide information on the distribution of mate lengths observed for
those pairs both of which are in the same unitig or contig (and thus whose distance is known precisely).
For each mate-link distance type provided to the assembler, a message describing the distribution mates in
the current assembly is produced:

IntMateDistMesg: {IMD
record
 refines: IntDistance_ID ref:%d
 mean: float mea:%f
 stddev: float std:%f
 min: int32 min:%d
 max: int32 max:%d
 num_buckets: int32 buc:%d
 histogram: list of int32 his:↵(%d↵)*
end }

refines indicates the distance type for which this is the distribution. mean and stddev are the calculated
mean and standard deviations for mate pairs of this type. min and max are the minimum and maximum
distances observed for this type. histogram is a list of num_buckets entries, each of which is a count

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 12 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

of the number of occurrences of a distance in the corresponding subrange of the entire range from min to
max.

Interior Augmented Fragment Messages:

These messages pass on information about the fragments obtained when building contigs and
scaffolds. The chimeric flag is set if the read appears to be a chimera based on the extended unitig graph.
The chaff fragment is set if the read is a singleton – not incorporated with other fragments into any
scaffold. The clear_rng field gives the clear range of the fragment. This value may be the same as the one
input into the assembler, or the assembler may have adjusted it based on examination of the extended unitig
graph. The mate_status gives the assembler’s determination of the correctness of the mate. The values of
this field are described more completely under the in the AugFragMesg section.

IntAugFragMesg: {IAF
record
 iaccession: IntFragment_ID acc:%ld
 type: scalar (AS_READ,AS_EXTR,AS_TRNR, typ:[RXTELUFS]
 AS_EBAC,AS_LBAC,AS_UBAC,
 AS_FBAC,AS_STS)
 chimeric: Boolean chi:%d
 clear_rng: SeqInterval clr:%d,%d
 mate_status: scalar (GOOD_MATE, BAD_MATE, NO_MATE,
 UNRESOLVED_MATE) mst:[GBNU]
end }

Scaffold Messages:

A series of the assemblers best choices for the scaffolds is output as "the" assembly. This message will
actually be produced by the CGW and passed through by Consensus. Each scaffold is given as a list of the
pairs of adjacent contigs in the scaffold with the chi-squared consensus estimate of the distance and
standard deviation thereof between the contigs. The scaffold and unitig links supporting the scaffold are
all known by virtue of having an AS_IN_ASSEMBLY status value.

IntScaffoldMesg: {ISF
record
 num_contigs_pairs: int32 noc:%d
 contig_pairs: list of IntContigPairs (<ICP -record>↵)*
end }

IntContigPairs: {ICP
record
 contig1: IntContig_ID ct1:%d
 contig2: IntContig_ID ct2:%d
 orientation: scalar {AB_AB, BA_BA,
 BA_AB, AB_BA} ori:[NAOI]
 mean: float32 mea:%f
 stddev: float32 std:%f
end }

In the list of contig pairs, the contigs are ordered from left to right across the scaffold. For example, if the
first three contigs in a scaffold have ids 1, 2, & 3. Then in the list of contig pairs, the first pair of contigs
would have contig1 = 1 and contig2 = 2, and the second pair would have contig1 = 2 and contig2 = 3. The
orientation field describes the pairwise orientation of the two contigs within the scaffold. (Previously this
field always had the implied value of ‘N’, and all contigs were oriented along the direction of the scaffold.)
A scafffold may consist of a single contig, in which case the num_contig_pairs will be zero and the id of
the second contig will be the sentinel value –1, and the orientation and distance are arbitrary.

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 13 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

7. Consensus:

Consensus intercepts PreContigMesg messages and converts them to IntConConMesgn messages through
the action of computing a multialignment for each. In doing so it identifies any unitigs that must be
included in the multi-alignment in order to avoid sequence gaps. These unitigs are called surrogates.

IntConConMesg: {ICM
record
 iaccession: IntContig_ID acc:%d
length: int32 len:%d
 consensus: string(char) cns:↵(%[^\n]↵)*.
 quality: string(bytes) qlt:↵(%[^\n]↵)*.
 forced: boolean for:%d
 num_pieces: int32 npc:%d
 num_unitigs: int32 nou:%d
 pieces: list of IntMultiPos (<IMP-record>↵)*
 unitigs: list of IntElementPos IEP-record>↵)*
end }

An IntContigMesg record contains the following information:

1. A unique accession number assigned by the assembler.
2. Time of last modification of the contig (if this hasn’t changed since the last interim report then the

contig is identical to what was specified in the last report).
3. The gapped-consensus sequence determined for the contig. Note carefully the consensus will contain

dash characters in order that one be able to align each fragment with it.
4. A list of the fragments and surrogate unitigs assigned to the contig. For each we give in a MultiPos-

record their location in the multi-alignment and a delta encoding of the alignment to the consensus.
Positions in the consensus are locations between characters starting at 0 on the left. The delta is a
series of positive integers indicating the positions within the fragment’s clear range at which to insert a
dash. The delta encoding for the alignment of a unitig in a contig is with respect to the unitig’s
ungapped sequence coordinates. Note that in aggregate, these records specify the layout of the contig
and a precise representation from which to compute a multi-alignment with just a bit of additional
effort.

8. External Output: The Genome Snapshot:

The output from the entire assembly module is a series of messages that collectively comprise a
Genome Snapshot, i.e., a description of the current best state of the assembly. This includes information
about: individual fragments; the distribution of distances between fragment mates; how the fragments have
been assembled into unitigs (chunks); how the unitigs have been combined into contigs; and how the
contigs can be laid out across the genome.

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 14 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

Fragment Messages:

The information about individual fragments is contained in augmented fragment messages (AFG).
These are emitted for each fragment that the assembler has processed and contain essentially all the
information about that fragment relative to the current assembly. The format of the message is:

AugFragMesg: {AFG
record
 accession: Fragment_ID acc:%ld
 screened: list of ScreenMatch scn:↵<SMA-record>*.
 mate_status: scalar (GOOD_MATE, BAD_MATE, NO_MATE,
 UNRESOLVED_MATE) mst:[GBNU]
 chimeric: Boolean chi:%d
 chaff: Boolean cha:%d
 clear_rng: SeqInterval clr:%d,%d
end }

Most of these fields are the same as those already described in previous fragment messages. Of the

others:

1. chimeric indicates if this fragment has been determined to be chimeric. If so, the fragment will

be in a singleton unitig.
2. chaff indicates the fragment is a singleton – not incorporated with any other fragments into a

scaffold.
3. clear_rng is the clear range of the fragment. This may have been altered by the assembler.
4. mate_status is the assembler’s determination of whether mates are erroneous of not. NO_MATE

indicates that no mate for the fragment was input into the assembler. GOOD_MATE means the
mate is confirmed by the assembly. BAD_MATE means the mate is inconsistent with the
assembly. UNRESOLVED_MATE means the mate is neither confirmed by the assembly nor
inconsistent with the assembly.

Unitig, Contig, Scaffold and Mate Distance Distribution Messages:

The assembler also outputs the IUM, IUL, ICM, ICL, ISF, and IMD messages, save that all internal
IDs are converted to long external IDs. In this form of the messages the 3-codes become UTG, ULK,
CCO, CLK, SCF, and MDI, respectively. Moreover, in all the corresponding datastructure names that
begin with "Int" have this prefix removed. Also the internal submessages IMP, IEP, and ICP become MPS,
EPS, and CTP, respectively.

AUTHORS

Gene Myers

Created: October 14, ’98

Revised: Jan. 8, '99 by Gene Myers

 Added GateKeeper Module section to design with associated
 changes to subsequent stages.

Revised: Feb. 1, '99 by Gene Myers

 Removed unecessary external Ids from internal message
 references

Revised: Feb. 8, '99 by Gene Myers

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 15 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

 Incorporated chunk graph specifications, with modifications.

Revised: Feb. 22, '99 by Gene Myers

 Incorporate consensus module specifications.

Revised: Mar. 5, ’99 by Ian Dew

 Added relevance field to ScreenItemMesg and ScreenMatch.

Revised: Mar. 10, '99 by Karin Remington

 Modified consensus output, mostly to include size info.

Revised: Mar. 22, ’99 by Eric Anson

Had to redo definitions of Chunk Mate Edge messages after a copy of this document
became somehow corrupted.

Revised: Mar. 30, 1999 by Art Delcher
Changed branch-point message.

Revised: Apr 9, 1999 by Art Delcher
Added Genome Snapshot section.

Revised: April 23, '99 by Saul A. Kravitz

 Updates to Fragments, Links, Distance, Chunks and Consensus

Revised: May 11, '99 by Clark Mobarry
Changes to the CHK messages and removed the join messages
from the information flow.

Revised: May 11, '99 by Karin A. Remington

Changes to RTG and CTG messages and descriptions thereof.

Revised: June 2, '99 by Gene Myers
Attempt to finalize output of pipeline and sanitize entire
document.

Revised: May 11, '99 by Knut Reiner
Changes to the genome snapshot three letter codes.

Revised: June 29,'99 by Eric Anson
Further description of the scaffold messages and inserting
the mate status field back into the AugFrag messages.

Revised: July 26,'99 by Saul A. Kravitz
Added type to IntMatePair.

Revised: July 28,'99 by Saul A. Kravitz
Added LinkMesg orientation AS_UNKNOWN and some description.

Revised: August 9,'99 by Saul A. Kravitz (1.55)
Duplicated some text from CeleraAssembler.rtf here

Revised: September 22,'99 by Saul A. Kravitz (1.56)
Proposed changes to contigs and scaffolds, subject to
CarlD’s and GeneM’s approval. Cleaned up some of the
historical material. This can always be retrieved from
CVS.

Revised: September 22,'99 by Saul A. Kravitz (1.57)
Reflects Gene’s Feedback

Celera CONFIDENTIAL Assembly Team Doc

07/12/07 Page 16 of 16 /doc/BigPicture/ProtoSpec.rtf $Revision: 1.1.1.1 $

Revised: September 24,'99 by Saul A. Kravitz (1.58)
Change to UOM message for containment

Revised: September 24,'99 by Saul A. Kravitz (1.59)
Change to IUL message for containment

Revised: October 6,'99 by Saul A. Kravitz (1.61)
Corrections and clarifications to LKG message

Revised: October 6,'99 by Saul A. Kravitz
Corrections and clarifications to LKG message

Revised: December 10, 1999 by Clark M. Mobarry

 Modifications to the UOM messages.

