Gap Walking Off-End Walking

External BAC Walker

1. Overview

The goal of the External BAC Walker (EBW) is to utilize the information available via
BACs to augment the scaffold. There are several cases where BAC information can
potentially be used to add coverage to an assembly. One case is when a gap occurs in the
interior of a locale, and a BAC exists that spans the gap. Another case is at the end of a
contig where the BAC could be used to extend coverage into the gap or off the end of a
scaffold.

The basic approach to use BAC information in either case is to identify the BAC
fragments that are near the end of the contig, and attempt to use contigs containing the
appropriate BAC fragments to either walk the gap between contigs or to extend off the
end of the contig.

The EBW will run as part of CGW. Thus we will utilize as much as possible the existing
mechanisms and data structures in this effort.

2. Basic Design

The EBW will apply the following approach to each scaffold:

a. Scan the scaffold a gap at a time.

b. Identify the BACs that have fragments within a certain distance of the end of
the contigs that flank the gap.

c. If any BAC has fragments on both sides of the gap, attempt to walk the gap
using only contigs that contain fragments from that BAC. If more than one
BAC has fragments on both sides, choose the BAC to use based on the
agreement between the estimated gap size and the distance between the BAC
fragments.

d. If no BAC has fragments on both sides of the gaps (or we are at the end of a
scaffold), select BACs which extend into the gap and attempt to walk out into
the gap utilizing contigs which contain fragments from that BAC.

The current gap walking module has many of the features that will be needed for BAC
walking. However, there are differences in the data and algorithm between the two



approaches:

1. the current gap walker assumes that all the overlap edges among the
chunks in the graph are present,
ii. the current gap walker takes only the quality of the overlap, and does not

take into consideration distance relationships present in the underlying
fragments that the EBW wants to utilize,

iii. the current gap walker is not designed to walk off the end of contigs,

1v. the current Frag Store does not allow for easy retrieval of all fragments
associated with a locale,

V. the current gap walker includes all the available chunks in the graph it

constructs to search for a walk.

Item (i.) can be addressed by calculating all the needed overlap scores. This would be
accomplished by identifying all the chunks that contain fragments from the desired locale
and calculating the overlaps based on the positions of the contained fragments in the
original locale. Il.e., we will use the positions of the BAC fragments in the locale to
determine which overlap relationships are induced and calculate only those overlaps.

Item (ii.) will be addressed by constructing an appropriate edge scoring function for the
gap walking. For instance, the scoring function can be weighted to favor edges where the
overlap between the chunks is consistent with the positions of the contained fragments in
the locale.

Item (iii.) will require a new approach. One possible method would be to walk much as
in current walking, adding chunks whose overlaps and contained locale chunks are
consistent and checking to make sure that the placement of these chunks are consistent
with other placed data.

Item (iv.) is being addressed in the design of the Assembler Grande Frag Store. In the
current design there is an index structure that allows for the retrieval of all fragments
associated with a locale.

Item (v.) will be addressed by constructing a new subgraph-building routine that limits
the chunks in the subgraph to those in the chosen BAC or BACs.

Item (v.)

3. Plan

Items (i.) and (iii.) will require the most effort. The functionality of item (i.) can be
incorporated into the current gap walking code as part of a new routine to build the graph
that the walking occurs over. The overlap scores can then be stored inside existing data
structures and accessed during the walking.

Item (iii.) may be able to be addressed via a new termination condition for the current



walker. Currently, a successful walk ends when the destination chunk is reached and the
walk distance is consistent with the gap estimate. In the case of BAC walking off of the
end, the termination condition could, e.g., be reaching the last of the chunks that contain
fragments from the correct locale, or when no chunk that contains the correct locale
fragments are present.

The functionality needed to deal with item (ii.) can be achieved through the construction
of the appropriate scoring function. The edges available off of a particular node will
already be highly constrained due to the way the graph is constructed. The weighting
function will have to decide among only the edges that are consistent with the currently
planned 3x shredding of the data.

4. Cases and Priorities

There are a number of difficult cases beside the relatively straightforward instances of
inserting unscaffolded chunks to fill a gap or the extension of a contig out into a gap or
off the end of a scaffold. In this section we illustrate some of those cases, and give an
order in which we plan to handle such cases.

Case 1 is the normal gap walking mode, i.e., there is a gap spanned by fragments from a
BAC and we use the unscaffolded chunk containing those fragments to walk the gap.

Case 1

Case 2 is the next easiest case to handle. Here we walk off the end of a contig, either
because we could find no spanning locale, or we are at the end of a scaffold.

Case 2

Cases 3, 4, and 5 all involve logles that have fragments in two or more scaffolds. Some

mechanisms have already been developed to deal with walks involving two scaffolds. In
the current walker, if a scaffold is completely contained within the gap of another, the



smaller scaffold is merged with the larger. (See Case 4.) One possibility for dealing with
interleaved scaffolds (Case 5) is to mark the one scaffold dead and to use the chunks from
that scaffold as needed to walk or fill gaps in the other.

In Case 3, there are fragments from a single locale that are contained in contigs from two
separate scaffolds.

Case 3

In Case 4, a smaller scaffold is completely contained in the gap of a larger scaffold. The
fragments from the locale may not span the gap.

Case 4

Finally, in Case 5, the scaffolds are interleaved. This case is considered rather difficult to
deal with.

Case 5

5. Needed Infrastructure

Locale indices
ClIFragT fields



Authors:
Created: Mike Flanigan
Date: 01/26/00



