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Abstract. In the motif finding problem one seeks a set of mutually
similar subsequences within a collection of biological sequences. This
is an important and widely-studied problem, as such shared motifs in
DNA often correspond to regulatory elements. We study a combinatorial
framework where the goal is to find subsequences of a given length such
that the sum of their pairwise distances is minimized. We describe a novel
integer linear program for the problem, which uses the fact that distances
between subsequences come from a limited set of possibilities allowing
for aggregate consideration of sequence position pairs with the same
distances. We show how to tighten its linear programming relaxation by
adding an exponential set of constraints and give an efficient separation
algorithm that can find violated constraints, thereby showing that the
tightened linear program can still be solved in polynomial time. We apply
our approach to find optimal solutions for the motif finding problem and
show that it is effective in practice in uncovering known transcription
factor binding sites.

1 Introduction

A central challenge in post-genomic biology is to reconstruct the regulatory net-
work of an organism. A key step in this process is the discovery of regulatory
elements. A common approach finds novel sites by searching for a set of mutually
similar subsequences within DNA sequences. These subsequences, when aligned,
form motifs, and are putative binding sites for a shared transcription factor. The
effectiveness of identifying regulatory elements in this manner has been demon-
strated when considering sets of sequences identified via shared co-expression,
orthology and genome-wide location analysis (e.g., [19, 8, 11]).

Numerous problem formalizations and computational approaches have been
developed for motif finding (see [21], and references therein). Probabilistic ap-
proaches typically try to maximize the chance of observing the chosen motif in-
stances (e.g., [10, 3, 7]). Combinatorial methods either enumerate all allowed mo-
tifs or attempt to optimize some measure based on sequence similarity (e.g., [13,



12]). Here, we take a combinatorial approach and model the motif finding prob-
lem as that of finding the gapless local multiple sequence alignment of fixed
length that minimizes a sum-of-pairs (SP) distance measure. Such a formula-
tion provides a reasonable scheme for assessing motif conservation [15, 18]. The
problem is equivalent to that of finding a minimum weight clique of size p in
a p-partite graph (e.g., [16]). For general notions of distance, this problem is
NP-hard to approximate within any reasonable factor [4]. The problem and its
variants remain NP-hard in the context of biological sequences [1, 22], though
in the motif finding setting, where the distances obey the triangle inequality,
constant-factor approximation algorithms exist [2]. Nevertheless, the ability to
find the optimal solution in practice is preferable.

We introduce and extensively explore a mathematical programming approach
to motif finding. We propose a novel integer linear programming (ILP) formu-
lation of the motif finding problem that uses the discrete nature of the distance
metric imposed on pairs of subsequences, thereby allowing aggregation of edges
of the same weight. Considering its linear programming (LP) relaxation, we
show that while it is weaker than an alternative LP formulation for motif find-
ing [23], an exponentially-sized class of constraints can be added to make the
two formulations equivalent. We then show that it is not necessary to explicitly
add all these constraints by giving a separation algorithm, based on identifying
minimum cuts in a graph constructed to model the ILP, that identifies violated
constraints. The ellipsoid method [6] can then be used to find the solution to the
tightened LP in time polynomial in the number of variables of the mathematical
programming problem.

We test the effectiveness of our approach in identifying DNA binding sites
of E. coli transcription factors. We demonstrate that our new ILP framework
is able to find optimal solutions often an order of magnitude faster than the
previously known mathematical programming formulation, and that its per-
formance in identifying motifs is competitive with a widely-used probabilistic
Gibbs-sampling approach [20]. Finally, we note that in practice the LP relax-
ations often have integral optimal solutions, making solving the LP sufficient in
many cases for solving the original ILP.

2 Formal Problem Specification

We are given p sequences, which are assumed without loss of generality to
each have length N ′, and a motif length ℓ. In our formulation, the goal is
to find a subsequence si of length N ′ in each sequence i so as to minimize
the sum of the pairwise distances between the subsequences. Here, the dis-
tance between two substrings si and sj is computed as the Hamming distance
Hamming(si, sj) between them and thus our goal is to choose the substrings
such that

∑
i<j Hamming(si, sj) is minimized.

The problem can be reformulated in graph-theoretic terms. For p input se-
quences, we define a complete, weighted p-partite graph G = (V, E), with a part
for each sequence. In part i, there is a node for every substring of length ℓ in se-



quence i. Let Vi be the set of nodes in the part corresponding to sequence i. Thus
there are N := N ′ − ℓ + 1 nodes in each Vi, and the vertex set V = V1 ∪ · · · ∪ Vp

has size Np.
For every pair of nodes u and v in different parts there is an edge (u, v) ∈ E.

Letting seq(u) denote the subsequence corresponding to node u, the weight wuv

on edge (u, v) equals Hamming(seq(u), seq(v)). The goal is to choose a node
from each part so as to minimize the weight of the induced subgraph.

3 Integer Programming Formulations

3.1 Original integer linear programming formulation

We first give the integer linear programming formulation presented in [23] for
solving the motif finding problem. In this ILP formulation, there is a variable
Xu for each node u in the graph described above. The variable Xu is set to 1
if node u is chosen, and 0 otherwise. Additionally, there is one variable Xuv for
each edge in the graph (Xuv is the same as Xvu). These edge variables are set to
1 if both end points of the edge are chosen. In the integer program, all variables
are constrained to take values from {0, 1}. The following ILP is easily seen to
model the above graph problem:

Minimize
∑

{u,v}∈E wuv · Xuv

subject to∑
u∈Vi

Xu = 1 for each i = 1, . . . , p∑
u∈Vi

Xuv = Xv for each i = 1, . . . , p and for each fixed i,v ∈ V \ Vi

Xu, Xuv ∈ {0, 1}
(IP1)

The first set of constraints ensures that one node is chosen from each part, and
inclusion of the second set of constraints adds the requirement that an edge is
chosen if its end points are. This ILP is the same as the ILP formulation for
protein side-chain positioning presented in [9].

3.2 More compact integer linear program

We now introduce an alternative ILP that better exploits the structure of the
combinatorial problem. In particular, we use the fact that there are typically
only a small number of possible pairwise distances. For example, in the case of
Hamming distances, edge weights can only take on ℓ + 1 different values. We
can take advantage of the small number of possible weights and the fact that
the edge variables of IP1 are only used to ensure that if two nodes u and v are
chosen in the optimal solution then wuv is added to the cost of the clique. In our
new ILP formulation, we no longer have edge variables Xuv. Instead, in addition
to the node variables Xu, we have a variable Yujc for each node u, each part j
such that u /∈ Vj , and each edge weight c. These Y variables model groupings of
the edges by cost into cost bins, as shown in Fig. 1. The intuition is that Yujc is
1 if node u and some node v ∈ Vj are chosen such that wuv = c.



Fig. 1: Schematic of IP2. Adjacent to a node u ∈ Vi there are at most |D| cost bins
for each part j > i, each associated with a variable Yujc. For each cost c there are the
nodes v ∈ Vj for which wuv = c (stars).

Formally, let D be the set of possible edge weights (costs) and let W =
{(u, j, c) : c ∈ D, u ∈ V, j ∈ 1, . . . p and u 6∈ Vj} be the set of triples over which
the Yujc variables are indexed, and let part(u) = i if u ∈ Vi. Then the following
ILP models the motif-finding graph problem:

Minimize
∑

(u,j,c)∈W :part(u)<j c · Yujc

subject to∑
u∈Vi

Xu = 1 for i = 1, . . . , p (IP2a)∑
c∈D Yujc = Xu for j ∈ 1, . . . , p and u ∈ V \ Vj (IP2b)∑
v∈Vj :wuv=c Yvic ≥ Yujc for (u, j, c) ∈ W s.t. u ∈ Vi and i < j (IP2c)

Xu, Yujc ∈ {0, 1}
(IP2)

As in IP1, the first set of constraints forces a single node to be chosen in each
part. The second set of constraints makes certain that if a node u is chosen, then
for each j, one of its “adjacent” cost bins must also be chosen (Fig. 1). The third
set of constraints ensures that Yujc can be selected only if some node v ∈ Vj ,
such that wuv = c, is also selected. We discard variables Yujc if there is no v ∈ Vj

such that wuv = c. Fig. 1 gives a schematic drawing of these constraints.

Lemma 1. IP2 correctly models the sum-of-pairs motif finding problem.

Proof. For any choice of p-clique {u1, . . . , up} of weight γ =
∑

i<j wuiuj
, a

solution of cost γ to IP2 can be found by taking Xui
= 1 for i = 1 . . . , p, and

taking Yuijc = 1 for all 1 ≤ j ≤ p such that wuiuj
= c. This solution is feasible,

and between any pair of graph parts i, j it contributes cost wuiuj
; therefore, the

total cost is γ. On the other hand, consider any solution (X, Y ) to IP2 of objective
value γ. Consider the clique formed by the nodes u such that Xu = 1. Between
every two parts i < j, the constraints (IP2a) and (IP2b) imply that exactly
one Yujc and one Yvic′ are set to 1 for some u ∈ Vi and v ∈ Vj and costs c, c′.



Constraint (IP2c) corresponding to (u, j, c) with Yujc on its right-hand side can
only be satisfied if the sum on its left-hand side is 1, which implies c = c′ = wuv.
Thus, a clique of weight γ exists in the motif-finding graph problem. �

3.3 Advantages of IP2

In practice, IP2 has many fewer variables than IP1. Letting d = |D|, the number
of kinds of weights, IP2 has Np((p − 1)d + 1) variables in the case that a Yujc

variable exists for every allowed choice of (u, j, c), while IP1 has Np(N(p−1)/2+
1) variables. If d < N/2, the second IP will have fewer variables. In general, d is
expected to be much smaller than N : while N could reasonably be expected to
grow large as longer and longer sequences are considered, d is constrained by the
geometry of transcription factor binding and will remain small. Also, in practice,
it is likely that many Yujc variables are removed because seq(u) does not have
matches of every possible weight in each of the other sequences. On the other
hand, IP2, will have O(d) times more constraints than IP1, with the number of
constraints being p + Np(p − 1)(d/2 + 1) for IP2, and p + Np(p − 1) for IP1.

In practice, smaller integer programs with weaker LP relaxations are often
less useful for branch-and-bound approaches to IP solving. Thus, we seek the
tightest, smallest IP possible. While the decrease in variables of IP2 tends to
be more dramatic than the increase in the number of constraints, experiments
must still be performed to gauge the efficacy of various formulations on prac-
tical problems. We present experiments below (see Computational Results

and Fig. 4), which suggest IP2 can be more than an order of magnitude faster
than IP1.

4 Linear programming relaxations

The typical approach to solving an ILP is to solve as a subproblem the linear
program relaxation derived from the ILP by dropping the requirement that the
variables be in {0, 1}, and instead requiring only that the variables lie in the
continuous range [0, 1]. While finding a solution to the ILP is computationally
difficult, its relaxed LP can be solved in polynomial-time. If the solution to
the relaxed LP is integral, then we have found a solution to the original ILP.
Alternatively, if the solution to the LP is fractional, then branch and bound or
other techniques can be used to obtain optimal solutions to the ILP.

The LP relaxation of IP1, which we refer to as LP1, is stronger than the LP
relaxation of IP2. Since we are minimizing the objective function, this means
that there are some problem instances for which the optimum value of LP2
is smaller than that of LP1. Because stronger LP relaxations are often more
useful subroutines for finding optimal integer solutions, we first present a natural
(though exponential) class of constraints that, if added to the LP relaxation of
IP2, makes the two formulations equivalent in the sense that they have the same
optimum and that an optimal solution to one can be easily derived from the
optimal solution of the other. We refer to this fully constrained relaxation of IP2



Fig. 2: Mapping for the compatibility graph Cij . The two columns of circles represent
nodes in Vi and Vj . Solid lines adjacent to each circle represent the Yujc or Yvic variables
associated with the node. Aij and Aji (dotted boxes) are the sets of these variables
associated with the pair of graph parts i and j. The function N (u, j, c) maps a variable
Yujc to a set of compatible Yvic variables (squiggly lines). N (u, j, c) is shown assuming
that v and w are the only nodes in Vj that have cost c with u.

as LP2. Later we give a separation algorithm for finding violated constraints,
and thereby show that LP2 can still be solved in polynomial-time.

4.1 Additional constraints

Focus on a pair of graph parts i and j. In IP1 the edge variables between nodes in
Vi and Vj explicitly model the bipartite graph between those two parts. In IP2,
however, the bipartite graph is only implicitly modeled by an understanding of
which Y variables are compatible to be chosen together. We study this implicit
representation by considering the bipartite compatibility graph Cij between two
parts i and j. Intuitively, we have a node in this compatibility graph for each Yujc

and Yvic, and there is an edge between the nodes corresponding to Yujc and Yvic

if wuv = c. These two Y variables are compatible in that they can both be set to 1
in IP2. More formally, Cij = (Aij , Aji, F ), where Aij = {(u, j, c) : u ∈ Vi, c ∈ D}
is the set of indices of Y variables adjacent to nodes in Vi, going to part j, and
Aji is defined analogously, going in the opposite direction. The edge set F is
defined in terms of the neighbors of a triple (u, j, c). Let N (u, j, c) = {(v, i, c) :
u ∈ Vi, (v, i, c) ∈ Aji and wuv = c} be the neighbors of (u, j, c). They are the
indices of the Yvic variables adjacent to part j going to part i so that the edge
{u, v} has weight c. There is an edge in F going between (u, j, c) and each of
its neighbors. Similarly to above, we call c the cost of triple (u, j, c). All this
notation is summarized in Fig. 2.

In any feasible integral solution, if Yujc = 1, then some Yvic for which
(v, i, c) ∈ N (u, j, c) must also be 1. Extending this insight to subsets of the
Yujc variables yields a class of constraints that will ensure that the resulting LP



formulation is as tight as LP1. That is, choose any set of Yujc variables adjacent
to part i. Their sum must be less than or equal to the sum of the Y variables for
their neighbors. Formally, if Qij ⊆ Aij , then let N (Qij) =

⋃
(u,j,c)∈Qij

N (u, j, c)
be the set of indices that are neighbors to any vertex in Qij . If Qij ⊆ Aij then
N (Qij) ⊆ Aji. The following constraint is true in IP2 for any such Qij :

∑

(u,j,c)∈Qij

Yujc ≤
∑

(v,i,c)∈N (Qij)

Yvic . (1)

Notice that the set of constraints (IP2c) is of the form (1), taking Qij to be the
singleton set {(u, j, c)}.

Theorem 1. If for every pair of graph parts i < j, constraints of the form (1)
are added to IP2 for each Q ⊆ Aij s.t. all triples in Q are of the same cost,
the resulting LP relaxation LP2 has the same optimal solution as that of the
relaxation LP1 of IP1.

Proof. It is clear that the LP relaxation LP2 described in Theorem 1 is no
stronger than LP1 as any solution to LP1 can be converted to a feasible solution
of LP2 by making the node variable weights the same and putting the weight of
edge variables Xuv onto Yujc and Yvic, where wuv = c. This solution to LP2 will
satisfy all the constraints in the theorem, and be of the same objective value.

The rest of the proof will involve showing that for any feasible solution for
LP2, there is a feasible solution for LP1 with the same objective value, thereby
demonstrating that the optimal solution to LP2 is not weaker than the optimal
solution to LP1. In particular, fix a solution (X, Y ) to LP2 with objective value γ.
We need to show that for any feasible distribution of weights on the Y variables
a solution to LP1 can be found with objective value γ.

In order to reconstruct a solution X̂ for LP1 of objective value γ, we will
set X̂u = Xu, using the values of the node variables Xu in the optimal solution
to LP2. We must assign values to X̂uv to complete the solution. Recall the
compatibility graph Cij . Because all edges in Cij are between nodes of the same
cost, Cij is really |D| disjoint bipartite graphs Cc

ij , one for each cost c. Let Ac
ij∪Ac

ji

be the node set for the subgraph Cc
ij for cost c. Each edge in a subgraph Cc

ij

corresponds to one edge in the graph G underlying LP1. Conversely, each edge
in G corresponds to exactly one edge in one of the Cc

ij graphs (if edge {u, v}
has cost c1, it corresponds to an edge in Cc1

ij ). We will thus proceed by assigning

values to the edges in the various Cc
ij , and this will yield values for the X̂uv.

If y(A) is defined as
∑

(u,j,c)∈A Yujc, by the sets of constraints (IP2a) and (IP2b),

y(Aij) = y(Aji) = 1. Since the constraints (1) are included with Q = Ac
ij for

each cost c, y(Ac
ij) = y(Ac

ji) for every cost c. Thus, for each subgraph Cc
ij , the

weight placed on the left half equals the weight placed on the right half. We will
consider each induced subgraph Cc

ij separately.
We modify Cc

ij as follows to make it a capacitated flow network. Direct the
edges of Cc

ij so that they go from Ac
ij to Ac

ji, and set the capacities of these edges
to be infinite. Add source and sink nodes {r, s} and edges directed from r to each



Fig. 3: Flow network Cc
ij between part i and j. Nodes r and s are a source and sink.

Each solid node corresponds to a Y variable. The edges between Aji and Aij have
infinite capacity, while those entering s or leaving r have capacity equal to the value
of the Y variable to which they are adjacent. The shading gives an r – s cut.

node in Ac
ij and edges directed from each node in Ac

ji to s. Every edge adjacent
to r and s is also adjacent to some node representing a Y variable; put capacities
on these edges equal to the value of the adjacent Y variable (see Fig. 3).

The desired solution to LP1 can be found if the weight of the nodes (Y
variables) in each compatibility subgraph can be spread over the edges. That is,
a solution to LP1 of weight γ can be found if, for each pair (i, j) and each c,
there is a flow of weight y(Ac

ij) from r to s in the flow network. The assignment

to X̂uv will be the flow crossing the corresponding edge in the Cc
ij of appropriate

cost. In Lemma 2 below, we show that the set of constraints described in the
theorem ensure that the minimum cut in the flow network is equal to y(Ac

ij),
and thus there is a flow of the required weight. The proof of this fact is similar
to those of other flow feasibility problems found in [5]. Together with the lemma
we have shown LP1 and LP2 to be equivalent. �

Lemma 2. The minimum cut of the flow network described in the proof of The-
orem 1 (and shown in Fig. 3) is y(Ac

ij).

Proof. Recall that the capacities of the edges leaving r are Yujc and those
entering s are Yvic, and that the total capacity leaving r equals the total capacity
entering s, and it is y(Ac

ij). We want to show that the minimum r− s cut in this
graph is ≥ y(Ac

ij).
Consider an r − s cut {r} ∪ A ∪ B where A ⊆ Ac

ij and B ⊆ Ac
ji (shaded

in Fig. 3). Define Ā = Ac
ij \ A and B̄ = Ac

ji \ B. If any edges go between A

and B̄ then the capacity is infinite, and we are done. Otherwise the value of the
cut is the sum of the capacities of the edges leaving r and entering Ā plus the
sum of the capacities of the edges entering s from B. We will now show that
y(Ā) ≥ y(B̄), which implies that the value of the cut is ≥ y(Ac

ji) = y(Ac
ij).



Assume for the moment that all nodes in Ā have a neighbor in B̄. Then
N (B̄) = Ā because there are no edges between A and B̄. By (1), y(B̄) ≤
y(N (B̄)) = y(Ā). On the other hand, if there is a node in Ā that does not have
a neighbor in B̄ then we can add that node to A to make A′ (without increasing
the cost of the cut), and the above argument shows that y(Ac

ij \ A′) ≥ y(B̄),

which implies y(Ā) ≥ y(B̄) since Ac
ij \ A′ ⊆ Ā. �

4.2 Separation algorithm

Despite the exponential number of constraints, it is possible to solve LP2 in
time polynomial in the number of variables of LP2 (which is polynomial in the
size of the input graph) using the ellipsoid algorithm [6], provided that there
exists a separation algorithm. Such an algorithm, given any values for the X
and Y variables of LP2, finds constraint of LP2 that is violated, if one exists, in
polynomial time or reports that no constraints are violated. The next theorem
gives such an algorithm, formalizing the intuition in the proof of Theorem 1,
by which all constraints are satisfied in a compatibility graph only if a large
enough maximum flow exists. Otherwise, the minimum cut identifies a violated
constraint.

Theorem 2. There is a polynomial-time algorithm that, given values for the X
and Y variables of LP2, can find a violated constraint of LP2 if one exists or
otherwise report that none exists.

Proof. The first step in such an algorithm is to explictly check X and Y against
each of the polynomial number of constraints IP2a, IP2b, IP2c as well as the
non-negativity constraints. If X and Y violate one of these constraints, we return
that constraint. Otherwise, either all the constraints of LP2 are satisfied or the
violated constraint is of the form (1). We describe below a polynomial-time
algorithm that will find a violated constraint of the form (1) if one exists.

Because each constraint in (1) involves variables of a single cost, if (1) is
violated for some set Q, then Q is a subset of an Ac

ij for some i, j, c, and so we
can consider each subgraph Cc

ij independently. The proof of Theorem 1 shows
that there is a violated constraint of the form (1) between i, j involving variables
of cost c if and only if the maximum flow in Cc

ij is less than y(Ac
ij). Thus, the

minimum cut can be found for each triple i, j, c, and, if a triple i, j, c is found
where the minimum cut is less than y(Ac

ij), one knows that a violated constraint
exists between parts i and j with Q ⊂ Ac

ij .

The minimum cut can then be examined to determine the violated constraint
explicitly. Let {r} ∪ A ∪ B be the minimum r – s cut in Cc

ij , with A ⊆ Ac
ij and

B ⊆ Ac
ji. Such a cut is shaded in Fig. 3. Let m be the capacity of this cut, and

assume, because we are considering a triple i, j, c that was identified as having
a violated constraint, that y(Ac

ij) > m. For ease of notation let Ā = Ac
ij \ A

and B̄ = Ac
ji \ B. Because m < ∞ there are no edges going from A to B̄, and

hence two things hold: (1) m = y(B) + y(Ā) and (2) N (A) ⊆ B, and therefore



y(N (A)) ≤ y(B). Chaining these facts together, we have

y(A) = y(Ac
ij) − y(Ā) > m − y(Ā) = y(B) ≥ y(N (A)) ,

Thus, the set A is a set for which the constraint of the form (1) is violated. �

In practice the ellipsoid algorithm is often slower than the well optimized
simplex algorithm. We can use the faster simplex algorithm because not all of
these constraints are necessary for real problems. Some particular choices of
Qij yield constraints that are intuitively very useful and are usually sufficient
in practice. The constraints with the largest Qij , that is Qij = Ac

ij for every
c, were used in the proof of Theorem 1, and we have found them to be useful
in practice. The relaxation of IP2 already includes all the constraints with Qij

corresponding to single Yujc variables. Rather than including constraints with
1 < |Qij | < |Ac

ij |, we include the constraints with i and j reversed, which can be
seen to be weaker versions of constraints (1) with larger Qij sets. Examples can
be constructed for which the constraints we use in practice are insufficient to
make LP2 as tight as LP1. However, we have not encountered such pathological
cases in biological data. More detail about our approach to and experiences with
real problems can be found in Section 5.

5 Computational Results

We apply our LP formulation to find binding sites for E. coli transcription fac-
tors, and we show that in practice our LP formulation results in significantly
faster running times than the previous simpler linear program. Moreover, in or-
der to demonstrate that our formulation of the motif finding problem results
in biologically relevant solutions, we show that our approach identifies binding
sites as well as a widely-used probabilistic technique [20].

5.1 Test Sets

We present results on identifying the binding sites of 39 E. coli transcription
factors (see Table 1). We construct our data set from the data of [17, 14] in a
fashion similar to [15]. In short, we remove all sites for sigma-factors, duplicate
sites, as well as those that could not be unambiguously located in the genome.
Data sets for all factors with only two sites remaining were discarded as un-
interesting for motif finding; datasets for ihf and crp are omitted due to size
considerations. For each transcription factor considered, we gather at least 300
base pairs of genomic sequence upstream of the transcription start sites of the
regulated genes. In the cases where the binding site is located further upstream,
we extend the sequence to include the binding site. This results in graphs with
up to 20 parts and 5, 960 nodes. The motif length for each dataset was chosen
based on the length of the consensus binding site, determined from other bio-
logical studies and ranging between 11 and 48. The transcription factors, the
length of their binding site, and the number of DNA sequences considered are
shown in Table 1.



TF ℓ p n TF ℓ p n TF ℓ p n TF ℓ p n

ada 31 3 810 farR 10 3 873 hns 11 5 1485 ompR 20 9 3057
araC 48 6 1715 fis 35 18 5371 lexA 20 19 5554 oxyR 39 4 1048
arcA 15 13 4790 flhCD 31 3 810 lrp 25 14 4090 phoB 22 14 4618
argR 18 17 5960 fnr 22 12 3705 malT 10 10 3410 purR 26 20 5856
cpxR 15 9 2614 fruR 16 11 4082 metJ 16 15 5754 soxS 35 13 4004
cspA 20 4 1410 fur 18 9 3182 metR 15 8 3312 torR 10 4 2198
cysB 40 3 783 galR 16 7 2188 modE 24 3 934 trpR 24 4 1108
cytR 18 5 1695 gcvA 20 4 1234 nagC 23 6 1870 tus 23 5 1390
dnaA 15 8 2381 glpR 20 11 3829 narL 16 10 3301 tyrR 22 17 5258
fadR 17 7 2122 hipB 30 4 1084 ntrC 17 5 1516

Table 1: Sizes for the 39 problems considered: number of sequences (p), motif length
(ℓ), and total number of nodes in the underlying graph (n).

5.2 Methodology

We first solve the LP relaxation of IP2. If the solution is not integral, we find
and add violated constraints and re-solve. We have observed that certain classes
of constraints of the form (1) are powerful in practice, and so we consider these
first:

1. Qij = Ac
ij for every i < j, c.

2. Qij = {(u, j, c) : c ∈ D} for every i < j, u ∈ Vi.

In addition, we consider the above constraints with i > j. We iterate, adding all
violated constraints of the above types and re-solving, until all such constraints
are satisfied. While in theory this heuristic approach may lead to a solution that
is not as tight as that of LP1, in all cases considered, we find that adding this
particular set of constraints is sufficient for making LP2 as tight as LP1. More-
over, in practice, this heuristic approach will be faster than using the ellipsoid
method [6] with our separation algorithm and, we show below, is usually faster
than solving LP1.

LP1 was solved using two different simplex variants. In the first (primal
dualopt), the primal problem was solved using the dual simplex algorithm.
In the second (dual primalopt), the dual problem was solved using the primal
simplex algorithm. LP2 was always solved using the dual simplex method applied
to the primal problem so that we could use the optimal basis of the previous
iteration as a starting point for the next, setting the dual variables for the added
constraints to be basic. This strategy eliminates the need to re-solve using an
arbitrary starting solution and provides a significant speedup.

The linear and integer programs were specified in the mathematical program-
ming modeling language Ampl and solved using CPLEX 7.1. All experiments
were run on a public 1.2 GHz SPARC workstation using a single processor. All
the timings reported are in CPU seconds. Any problem taking longer than five
hours was aborted. Interestingly, only 3 of the 34 problems solvable in less than
five hours using either LP1 or LP2 were not integral. Since the problem is NP-
complete, this is somewhat surprising. This suggests that handling non-integral
cases may not be as pressing an issue as one would think.



Transcription Factor Family

fu
r

fa
dR

m
al

T

m
et

R fn
r

dn
aA

ga
lR

hn
s

cp
xR

ar
aC

om
pR lrp

gl
pR

m
od

E

fr
uR

le
xA

ar
cA

nt
rC

gc
vA tu

s

na
gC

tr
pR

fa
rR

cs
pA

to
rR

ad
a

flh
C

D

hi
pB

m
et

J

ar
gR

ox
yR

cy
sB

ph
oB

cy
tR

M
at

rix
 S

iz
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4

C

LP
2 

T
im

es

100
300
900

2500
6800

18400
B

Results on 34 Transcription Factor Families

S
pe

ed
 u

p

0
5

10
15
20
25
30
35
40
45

A

*

Fig. 4: (a) Speed-up factor of LP2 over LP1. A triangle indicates problems for which
LP1 did not finish in less than five hours. An asterisk (far right) marks the problem
for which LP2 did not finish in less than five hours, but LP1 did. (b) Running times
in seconds for LP2 (log scale). (c) Ratio of matrix sizes for LP2 to LP1.

5.3 Performance of the LP relaxations

We solved LP1 and LP2 relaxations for the transcription factors listed in Table 1.
Fig. 4 plots the running times, matrix sizes, defined as the number of constraints
times the number of variables, and speed-up factors of LP2 over LP1. For five
problems, each LP failed to find a solution in the allotted five hours; these are
omitted from the figure. In most cases, the initial set of constraints was sufficient
to get a solution at least as good as that obtained by LP1. Six problems required
additional constraints to LP2 to make their solutions as tight. The problems
flhCD, torR, and hu required two iterations of adding violated constraints, ompR
required three, oxyR four, and nagC five. Running times reported in Fig. 4(b)
are the sum of the initial solve times and of all the iterations. Fig. 4(c) plots
(size of LP2)/(size of LP1). As expected, the size of the constraint matrix is
typically smaller for LP2. While in four cases the matrix for LP2 is larger, often
it is less than 50% the size of the matrix for LP1.

When comparing the running times of LP2 with those of LP1, the speed-up
factor is computed as min{primal dualopt LP1, dual primalopt LP1}/LP2,
that is, using the better running time for LP1. For all but one of the datasets,
a significant speed-up when using LP2 is observed, and an order of magnitude
speed-up is common, as shown in Fig. 4(a). For nine problems, while LP2 was
solved, neither simplex variant completed in less than five hours when solv-
ing LP1. For these problems, the timing for LP1 was set at five hours, giving
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Fig. 5: Difference between nPC values obtained using the ILP approach and Gibbs
Motif Sampler [20]; data sets with identical motifs are omitted. Bars above zero indicate
that ILP performs better.

a lower bound on the speed up. For one problem, cytR, the reverse was true
and LP2 did not finish within five hours, while LP1 successfully solved the prob-
lem. For this dataset, the timing for LP2 was taken to be five hours, giving an
upper bound.

We also compared the performance of our approach, measured by the nu-
cleotide performance coefficient (nPC ) [21], in identifying existing transcription
factor binding sites to that of Gibbs Motif Sampler [20]. The nPC measures
the degree of overlap between known and predicted motifs, and is defined as
nTP/(nTP + nFN + nFP ), where nTP, nFP, nTN, nFN refer to nucleotide
level true positives, false positives, true negatives and false negatives respec-
tively. We compare the nPC values for the two methods in Fig. 5. Each bar
in the chart measures the difference in nPC between the ILP approach and
Gibbs Motif Sampler, omitting those transcription factor datasets for which the
found motifs are identical. Of the 30 problems for which the integral optimal
was found using LP2, the sum-of-pairwise hamming distances measure more ac-
curately identifies the biologically known motif in seven cases, with nPC 0.11
better on average. In 20 cases, the two methods find identical solutions. In the
remaining 3 cases, Gibbs sampling does better, with nPC 0.08 better on av-
erage. Since the Gibbs sampling approaches have comparable performance to
other stochastic motif finding methods [21] and most combinatorial methods are
restricted by the lengths of the motifs considered, our ILP framework provides
an effective alternative approach for identifying DNA sequence motifs.

6 Conclusions

We introduced a novel ILP for the motif finding problem and showed that it
works well in practice. There are many interesting avenues for future work. While



the underlying graph problem is similar to that of [4, 9], one central difference
is that the edge weights satisfy the triangle inequality. In addition, edge weights
in the graph are not independent, as each node represents a subsequence from
a sliding window. Incorporating these features into the ILP may lead to further
advances in computational methods for motif finding. It would also be useful
to extend the basic formulation presented here to find multiple co-occurring
or repeated motifs (as supported by many widely-used packages). Finally, we
note that graph pruning and decomposition techniques (e.g., [16, 23]) may al-
low mathematical programming formulations to tackle problems of considerably
larger size.
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