Best Practices for Data Science Projects

Hector Corrada Bravo
Center for Bioinformatics and Computational Biology
Spring 2015
Libraries

1. Connect/access databases

2. Data structures for fundamental objects

3. Basic operations/algorithms on these structures

4. Tools for communication
Reproducibility

• Extremely important aspect of data analysis
 • ‘Starting from the same raw data, can we reproduce your analysis and obtain the same results?’
• Using libraries helps:
 • Since you don’t reimplement everything, reduce programmer error
 • Large user bases serve as ‘watchdog’ for quality and correctness
• Standard practices help:
 • Version control: git
 • Unit testing: RUnit, testthat
 • Share and publish: github
Practical Tips

• Many tasks can be organized in modular manner:
 • Data acquisition
 • Algorithm/tool development
 • Computational analysis
 • Communication of results
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up (wrangling)

 • Algorithm/tool development

 • Computational analysis

 • Communication of results
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis

 • Communication of results
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results
Practical Tips

- Many tasks can be organized in modular manner:
 - Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up
 - Algorithm/tool development: if new analysis tools are required
 - Computational analysis: use tools to analyze data
 - Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories

Rarely does a single language handle all of these equally well
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories

Choose the best tool for the job!
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up with R, python or shell scripting

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories
Practical Tips

- Many tasks can be organized in modular manner:
 - Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up
 - Algorithm/tool development: if new analysis tools are required
 - C/C++, R or python (depending on task)
 - Computational analysis: use tools to analyze data
 - Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 Best managed as shell or R/python/Ruby scripts

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories

I use R almost exclusively
Practical Tips

- Many tasks can be organized in modular manner:
 - Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up
 - Algorithm/tool development: if new analysis tools are required
 - Computational analysis: use tools to analyze data
 - Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories

Usually all of this is managed by a pipeline of shell/R/python/ruby scripts
Practical Tips

• Modularity requires organization and careful thought

• In Data Science we wear two hats

 • Algorithm/tool developer

 • **Experimentalist**: we don’t get trained to think this way enough!

• It helps two consciously separate these two jobs
Think like an experimentalist

• Plan your experiment

• Gather your raw data

• Gather your tools

• Execute experiment

• Analyze

• Communicate
Think like an experimentalist

• Let this guide your organization. I find structuring my projects like this to be useful:

```
project/
| data/
|  | processing_scripts
|  | raw/
|  | proc/
| tools/
|  | src/
|  | bin/
| exps
|  | pipeline_scripts
|  | results/
|  | analysis_scripts
|  | figures/
```
Think like an experimentalist

• Keep a lab notebook!

• Literate programming tools are making this easier for computational projects

 • http://en.wikipedia.org/wiki/Literate_programming

 • http://www.rstudio.com/ide/docs/r_markdown

 • http://ipython.org/notebook.html
Think like an experimentalist

• Separate experiment from analysis from communication

 • Store results of computations, write separate scripts to analyze results and make plots/tables

• Aim for reproducibility

 • There are serious consequences for not being careful

 • Publication retraction

 • Worse: http://videolectures.net/cancerbioinformatics2010_baggerly_irrh/

• Lots of tools available to help, use them! Be proactive: learn about them on your own!