Relational algebra
Relational Algebra

- Procedural language
- Six basic operators
 - select: σ
 - project: Π
 - union: \cup
 - set difference: $-$
 - Cartesian product: \times
 - rename: ρ
- The operators take one or two relations as inputs and produce a new relation as a result.
Select Operation – Example

Relation r

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

$\sigma_{A=B \land D > 5}(r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Select Operation

- Notation: $\sigma_p(r)$
- p is called the **selection predicate**
- Defined as:

$$\sigma_p(r) = \{ t \mid t \in r \text{ and } p(t) \}$$

Where p is a formula in propositional calculus consisting of **terms** connected by: \wedge (and), \vee (or), \neg (not)

Each **term** is one of:

- $<\text{attribute}>op<\text{attribute}>$ or $<\text{constant}>
- where op is one of: =, \neq, $>$, \ge, $<$, \le

- Example of selection:

$$\sigma_{\text{dept_name}=\text{"Physics"}}(\text{instructor})$$
Project Operation – Example

Relation r:

$$
\begin{array}{ccc}
A & B & C \\
\alpha & 10 & 1 \\
\alpha & 20 & 1 \\
\beta & 30 & 1 \\
\beta & 40 & 2 \\
\end{array}
$$

$\Pi_{A,C}(r)$:

$$
\begin{array}{cc}
A & C \\
\alpha & 1 \\
\alpha & 1 \\
\beta & 1 \\
\beta & 2 \\
\end{array}
=
\begin{array}{cc}
A & C \\
\alpha & 1 \\
\beta & 1 \\
\beta & 2 \\
\end{array}
$$
Project Operation

• Notation:

\[\Pi_{A_1, A_2, \ldots, A_k} (r) \]

where \(A_1, A_2 \) are attribute names and \(r \) is a relation name.

• The result is defined as the relation of \(k \) columns obtained by erasing the columns that are not listed.

• Duplicate rows removed from result, since relations are sets.

• Example: To eliminate the \textit{dept_name} attribute of \textit{instructor}

\[\Pi_{\text{id}, \text{name}, \text{salary}} (\text{instructor}) \]
Union Operation – Example

Relations r, s:

- r:
 - A: α, α, β, β
 - B: 1, 2, 1, 3

- s:
 - A: α, β
 - B: 2, 3

Union $r \cup s$:

- A: α, α, β, β
- B: 1, 2, 1, 3
Union Operation

- Notation: \(r \cup s \)
- Defined as:
 \[
 r \cup s = \{ t \mid t \in r \text{ or } t \in s \}
 \]
- For \(r \cup s \) to be valid.
 1. \(r, s \) must have the same **arity** (same number of attributes)
 2. The attribute domains must be **compatible** (example: 2\(^{nd}\) column of \(r \) deals with the same type of values as does the 2\(^{nd}\) column of \(s \))

- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

\[
\Pi_{\text{course_id}} (\sigma \text{ semester=“Fall” } \land \text{ year=2009} (\text{section})) \cup \\
\Pi_{\text{course_id}} (\sigma \text{ semester=“Spring” } \land \text{ year=2010} (\text{section}))
\]
Set difference of two relations

Relations r, s:

\[
\begin{array}{cc}
A & B \\
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\end{array}
\quad
\begin{array}{cc}
A & B \\
\alpha & 2 \\
\beta & 3 \\
\end{array}
\]

$r - s$:

\[
\begin{array}{cc}
A & B \\
\alpha & 1 \\
\beta & 1 \\
\end{array}
\]
Set Difference Operation

- Notation \(r - s \)
- Defined as:
 \[
 r - s = \{ t \mid t \in r \text{ and } t \notin s \}
 \]
- Set differences must be taken between compatible relations.
 - \(r \) and \(s \) must have the same arity
 - attribute domains of \(r \) and \(s \) must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

\[
\Pi_{course_id} (\sigma\ semester=\text{"Fall" } \land\ year=2009 (section)) - \Pi_{course_id} (\sigma\ semester=\text{"Spring" } \land\ year=2010 (section))
\]
Cartesian-Product Operation – Example

Relations r, s:

$$
\begin{array}{c|c}
\text{A} & \text{B} \\
\hline
\alpha & 1 \\
\beta & 2 \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{C} & \text{D} & \text{E} \\
\hline
\alpha & 10 & a \\
\beta & 10 & a \\
\beta & 20 & b \\
\gamma & 10 & b \\
\end{array}
$$

$r \times s$:

$$
\begin{array}{c|c|c|c|c}
\text{A} & \text{B} & \text{C} & \text{D} & \text{E} \\
\hline
\alpha & 1 & \alpha & 10 & a \\
\alpha & 1 & \beta & 10 & a \\
\alpha & 1 & \beta & 20 & b \\
\alpha & 1 & \gamma & 10 & b \\
\beta & 2 & \alpha & 10 & a \\
\beta & 2 & \beta & 10 & a \\
\beta & 2 & \beta & 20 & b \\
\beta & 2 & \gamma & 10 & b \\
\end{array}
$$
Cartesian-Product Operation

- Notation $r \times s$

- Defined as:
 $$r \times s = \{ t \; q \mid t \in r \text{ and } q \in s \}$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S = \emptyset$).

- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.
Composition of Operations

• Can build expressions using multiple operations
• Example: $\sigma_{A=C}(r \times s)$

$r \times s$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>β</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>β</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
<td>10</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>α</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>β</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>β</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>γ</td>
<td>10</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

$\sigma_{A=C}(r \times s)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>β</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>β</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
Rename Operation

• Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
• Allows us to refer to a relation by more than one name.
• Example:

\[\rho_x (E) \]

returns the expression \(E \) under the name \(X \)

• If a relational-algebra expression \(E \) has arity \(n \), then

\[\rho_{x(A_1,A_2,\ldots,A_n)} (E) \]

returns the result of expression \(E \) under the name \(X \), and with the attributes renamed to \(A_1, A_2, \ldots, A_n \).
Example Query

• Find the largest salary in the university
 – Step 1: find instructor salaries that are less than some other instructor salary (i.e. not maximum)
 – using a copy of instructor under a new name d
 \[
 \Pi_{\text{instructor.salary}} \left(\sigma_{\text{instructor.salary} < d.\text{salary}} \right)
 (\text{instructor} \times \rho_{d} (\text{instructor}))
 \]
 – Step 2: Find the largest salary
 \[
 \Pi_{\text{salary}} (\text{instructor}) -
 \Pi_{\text{instructor.salary}} \left(\sigma_{\text{instructor.salary} < d.\text{salary}} \right)
 (\text{instructor} \times \rho_{d} (\text{instructor}))
 \]
Example Queries

- Find the names of all instructors in the Physics department, along with the course_id of all courses they have taught

 - Query 1
 \[
 \Pi_{\text{instructor.ID, course_id}} \left(\sigma_{\text{dept_name}="\text{Physics}"} \left(\sigma_{\text{instructor.ID}=\text{teaches.ID}} \left(\text{instructor} \times \text{teaches} \right) \right) \right)
 \]

 - Query 2
 \[
 \Pi_{\text{instructor.ID, course_id}} \left(\sigma_{\text{instructor.ID}=\text{teaches.ID}} \left(\sigma_{\text{dept_name}="\text{Physics}"} \left(\text{instructor} \times \text{teaches} \right) \right) \right)
 \]
Formal Definition

• A basic expression in the relational algebra consists of either one of the following:
 – A relation in the database
 – A constant relation

• Let E_1 and E_2 be relational-algebra expressions; the following are all relational-algebra expressions:
 – $E_1 \cup E_2$
 – $E_1 - E_2$
 – $E_1 \times E_2$
 – $\sigma_p(E_1)$, P is a predicate on attributes in E_1
 – $\Pi_s(E_1)$, S is a list consisting of some of the attributes in E_1
 – $\rho_x(E_1)$, x is the new name for the result of E_1
Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Assignment
- Outer join
Set-Intersection Operation

• Notation: $r \cap s$
• Defined as:
 \[r \cap s = \{ t \mid t \in r \text{ and } t \in s \} \]
• Assume:
 – r, s have the same arity
 – attributes of r and s are compatible
• Note: $r \cap s = r - (r - s)$
Set-Intersection Operation – Example

- **Relation** r, s:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td>β</td>
<td>3</td>
</tr>
</tbody>
</table>

- $r \cap s$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2</td>
</tr>
</tbody>
</table>
Natural-Join Operation

• Let \(r \) and \(s \) be relations on schemas \(R \) and \(S \) respectively. Then, \(r \Join s \) is a relation on schema \(R \cup S \) obtained as follows:
 – Consider each pair of tuples \(t_r \) from \(r \) and \(t_s \) from \(s \).
 – If \(t_r \) and \(t_s \) have the same value on each of the attributes in \(R \cap S \), add a tuple \(t \) to the result, where
 * \(t \) has the same value as \(t_r \) on \(r \)
 * \(t \) has the same value as \(t_s \) on \(s \)

• Example:
 \(R = (A, B, C, D) \)
 \(S = (E, B, D) \)
 – Result schema = \((A, B, C, D, E) \)
 – \(r \Join s \) is defined as:
 \[\Pi_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s)) \]
Natural Join Example

• Relations r, s:

\[r \times s \]

\[
\begin{array}{cccc}
A & B & C & D \\
\alpha & 1 & \alpha & a \\
\beta & 2 & \gamma & a \\
\gamma & 4 & \beta & b \\
\alpha & 1 & \gamma & a \\
\delta & 2 & \beta & b \\
\end{array}
\]

\[
\begin{array}{ccc}
B & D & E \\
1 & a & \alpha \\
3 & a & \beta \\
1 & a & \gamma \\
2 & b & \delta \\
3 & b & \varepsilon \\
\end{array}
\]

\[
\begin{array}{cccccc}
A & B & C & D & E \\
\alpha & 1 & \alpha & a & \alpha \\
\alpha & 1 & \alpha & a & \gamma \\
\alpha & 1 & \gamma & a & \alpha \\
\alpha & 1 & \gamma & a & \gamma \\
\delta & 2 & \beta & b & \delta \\
\end{array}
\]
Natural Join and Theta Join

• Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach
 \[\Pi_{\text{name, title}} (\sigma_{\text{dept_name}=\text{“Comp. Sci.”}} (\text{instructor} \bowtie \text{teaches} \bowtie \text{course})) \]

• Natural join is associative
 \[(\text{instructor} \bowtie \text{teaches}) \bowtie \text{course} \]
 is equivalent to
 \[\text{instructor} \bowtie (\text{teaches} \bowtie \text{course}) \]

• Natural join is commutative
 \[\text{instruct} \bowtie \text{teaches} \]
 is equivalent to
 \[\text{teaches} \bowtie \text{instructor} \]

• The **theta join** operation \(r \bowtie_{\theta} s \) is defined as
 \[r \bowtie_{\theta} s = \sigma_{\theta} (r \times s) \]
Assignment Operation

- The assignment operation \((\leftarrow)\) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.
Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples from one relation that do not match tuples in the other relation to the result of the join.
- Uses *null* values:
 - *null* signifies that the value is unknown or does not exist
 - All comparisons involving *null* are (roughly speaking) **false** by definition.
Outer Join – Example

• Relation *instructor1*

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>dept_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
</tr>
</tbody>
</table>

• Relation *teaches1*

<table>
<thead>
<tr>
<th>ID</th>
<th>course_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>CS-101</td>
</tr>
<tr>
<td>12121</td>
<td>FIN-201</td>
</tr>
<tr>
<td>76766</td>
<td>BIO-101</td>
</tr>
</tbody>
</table>
Outer Join – Example

- Join

\[\text{instructor} \Join \text{teaches} \]

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>dept_name</th>
<th>course_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>CS-101</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>FIN-201</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>null</td>
</tr>
</tbody>
</table>

- Left Outer Join

\[\text{instructor} \bowtie \text{teaches} \]

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>dept_name</th>
<th>course_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>CS-101</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>FIN-201</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>null</td>
</tr>
</tbody>
</table>
Outer Join – Example

Right Outer Join

\[\text{instructor} \Join \text{teaches} \]

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>dept_name</th>
<th>course_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>CS-101</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>FIN-201</td>
</tr>
<tr>
<td>76766</td>
<td>null</td>
<td>null</td>
<td>BIO-101</td>
</tr>
</tbody>
</table>

Full Outer Join

\[\text{instructor} \Join \text{teaches} \]

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>dept_name</th>
<th>course_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>CS-101</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>FIN-201</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>null</td>
</tr>
<tr>
<td>76766</td>
<td>null</td>
<td>null</td>
<td>BIO-101</td>
</tr>
</tbody>
</table>
Outer Join using Joins

- Outer join can be expressed using basic operations
 - e.g. $r \boxtimes s$ can be written as
 $$(r \boxtimes s) \cup (r - \Pi_R(r \boxtimes s) \times \{(null, \ldots, null)\}$$
Null Values

• It is possible for tuples to have a null value, denoted by \textit{null}, for some of their attributes

• \textit{null} signifies an unknown value or that a value does not exist.

• The result of any arithmetic expression involving \textit{null} is \textit{null}.

• Aggregate functions simply ignore null values (as in SQL)

• For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)
Null Values

• Comparisons with null values return the special truth value: *unknown*
 – If *false* was used instead of *unknown*, then \(\text{not} (A < 5) \)
 would not be equivalent to \(A \geq 5 \)

• Three-valued logic using the truth value *unknown*:
 – OR: \((\text{unknown or true}) = \text{true} \),
 \((\text{unknown or false}) = \text{unknown} \),
 \((\text{unknown or unknown}) = \text{unknown} \)
 – AND: \((\text{true and unknown}) = \text{unknown} \),
 \((\text{false and unknown}) = \text{false} \),
 \((\text{unknown and unknown}) = \text{unknown} \)
 – NOT: \((\text{not unknown}) = \text{unknown} \)
 – In SQL “*P is unknown*” evaluates to true if predicate \(P \) evaluates to *unknown*

• Result of select predicate is treated as *false* if it evaluates to *unknown*
Division Operator

- Given relations \(r(R) \) and \(s(S) \), such that \(S \subseteq R \), \(r \div s \) is the largest relation \(t(R-S) \) such that
 \[t \times s \subseteq r \]

- E.g. let \(r(ID, course_id) = \prod_{ID, course_id} (\text{takes}) \) and
 \(s(course_id) = \prod_{course_id} (\sigma_{\text{dept_name}=\text{Biology}}(\text{course})) \)
 then \(r \div s \) gives us students who have taken all courses in the Biology department.

- Can write \(r \div s \) as

 \[
 \text{temp1} \leftarrow \prod_{R-S} (r) \\
 \text{temp2} \leftarrow \prod_{R-S} ((\text{temp1} \times s) - \prod_{R-S,S} (r)) \\
 \text{result} = \text{temp1} - \text{temp2}
 \]

- The result to the right of the \(\leftarrow \) is assigned to the relation variable on the left of the \(\leftarrow \).

- May use variable in subsequent expressions.
Extended Relational-Algebra-Operations

- Generalized Projection
- Aggregate Functions
Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

\[\Pi_{F_1, F_2, \ldots, F_n}(E) \]

- \(E \) is any relational-algebra expression
- Each of \(F_1, F_2, \ldots, F_n \) are arithmetic expressions involving constants and attributes in the schema of \(E \).
- Given relation \textit{instructor}(ID, name, dept_name, salary) where salary is annual salary, get the same information but with monthly salary

\[\Pi_{ID, name, dept_name, salary/12} \textit{(instructor)} \]
Aggregate Functions and Operations

- **Aggregation function** takes a collection of values and returns a single value as a result.
 - `avg`: average value
 - `min`: minimum value
 - `max`: maximum value
 - `sum`: sum of values
 - `count`: number of values

- **Aggregate operation** in relational algebra
 \[
 G_{G_1, G_2, \ldots, G_n} F_1(A_1), F_2(A_2, \ldots, F_n(A_n))(E)
 \]

 - *E* is any relational-algebra expression
 - \(G_{G_1, G_2, \ldots, G_n} \) is a list of attributes on which to group (can be empty)
 - Each \(F_i \) is an aggregate function
 - Each \(A_i \) is an attribute name

- Note: Some books/articles use \(\gamma \) instead of \(G \) (Calligraphic \(G \))
Aggregate Operation – Example

• Relation r:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>α</td>
<td>α</td>
<td>7</td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>7</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>3</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>10</td>
</tr>
</tbody>
</table>

$G_{\text{sum}(c)}(r)$

$\text{sum}(c)$

27
Aggregate Operation – Example

- Find the average salary in each department

\[
\text{dept_name} \ G \ \text{avg(salary)} \ (\text{instructor})
\]

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>dept_name</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>76766</td>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>58583</td>
<td>Califieri</td>
<td>History</td>
<td>62000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>33456</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dept_name</th>
<th>avg_salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>Comp. Sci.</td>
<td>77333</td>
</tr>
<tr>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
<tr>
<td>Finance</td>
<td>85000</td>
</tr>
<tr>
<td>History</td>
<td>61000</td>
</tr>
<tr>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>Physics</td>
<td>91000</td>
</tr>
</tbody>
</table>
Aggregate Functions (Cont.)

• Result of aggregation does not have a name
 – Can use rename operation to give it a name
 – For convenience, we permit renaming as part of aggregate operation

\[
\text{dept_name } \bigcap \text{ avg(salary) as avg_sal (instructor)}
\]
Modification of the Database

• The content of the database may be modified using the following operations:
 – Deletion
 – Insertion
 – Updating

• All these operations can be expressed using the assignment operator
Multiset Relational Algebra

• Pure relational algebra removes all duplicates
 – e.g. after projection
• Multiset relational algebra retains duplicates, to match SQL semantics
 – SQL duplicate retention was initially for efficiency, but is now a feature
• Multiset relational algebra defined as follows
 – selection: has as many duplicates of a tuple as in the input, if the tuple satisfies the selection
 – projection: one tuple per input tuple, even if it is a duplicate
 – cross product: If there are \(m \) copies of \(t1 \) in \(r \), and \(n \) copies of \(t2 \) in \(s \), there are \(m \times n \) copies of \(t1.t2 \) in \(r \times s \)
 – Other operators similarly defined
 • E.g. union: \(m + n \) copies, intersection: \(\min(m, n) \) copies
 difference: \(\min(0, m - n) \) copies
SQL and Relational Algebra

- **select** A_1, A_2, \ldots, A_n
 from r_1, r_2, \ldots, r_m
 where P
 is equivalent to the following expression in multiset relational algebra

$$
\Pi_{A_1, \ldots, A_n} (\sigma_P (r_1 \times r_2 \times \ldots \times r_m))
$$

- **select** $A_1, A_2, \text{sum}(A_3)$
 from r_1, r_2, \ldots, r_m
 where P
 group by A_1, A_2
 is equivalent to the following expression in multiset relational algebra

$$
A_1, A_2 \mathcal{G}_{\text{sum}(A_3)} (\sigma_P (r_1 \times r_2 \times \ldots \times r_m)))
$$
More generally, the non-aggregated attributes in the `select` clause may be a subset of the `group by` attributes, in which case the equivalence is as follows:

```
select A1, sum(A3)
from  r1, r2, ..., rm
where P
group by A1, A2
```

is equivalent to the following expression in multiset relational algebra

```
Π_{A1,sum} (π_{A1,A2} (σ_P (r1 x r2 x .. x rm)))
```