CMSC423: Bioinformatic Algorithms, Databases and Tools

Alignment heuristics

Heuristics

- What if limit the \# of differences allowed? E.g. we expect the sequences to be very similar.
- Compute 'banded' alignment - stay within \# of differences (k) from the diagonal.
- Optimal alignment cannot stray too far from diagonal

O(km) running time and space

- What if we do not know k? Do binary search to find it CMSC423 Fall 2009

Exclusion methods

- Assume P must match T with at most k errors. Find places in T where P cannot match.
- Split P into floor(n/k+1)-sized chunks.
- If P matches T with less than k errors => at least one chunk matches with no errors
- Use any exact matching algorithm to find places where a chunk matches T , then run dynamic programming in that vicinity.
- Running time, on average $\mathrm{O}(\mathrm{m})$

Exclusion methods

"Famous" approaches

- FASTA (Pearson et al.)
- Take all k-mers (substrings of length k) from Pattern and identify whether and where they match in the Text
- Assume the k-mer starting at pos'n i in Pattern matches at position j in Text, remember ($\mathrm{j}-\mathrm{i}$) - the diagonal on which the match occured
- Identify "heavy" diagonals - diagonals where many k-mers match, then refine the diagonals with Smith Waterman
- Also look for off-diagonal matches to account for gaps

"Famous" approaches

- BLAST (Altschul et al.)
- Find short k-mer matches
- Also search for possible inexact matches, e.g. all k-mers within 1 difference from current one.
- Extend exact matches with Smith-Waterman algorithm
- Assign probabilistic scores to matches: what is the probability of finding a match with the same S-W alignment score just by chance (e.g. matching a random string)?

Aside: viewing alignments with dot-plots

axes - two sequences/genomes, 'dots' - regions that match in the two genomes

Chaining approach

- Extends the FASTA idea
- Search for exact matches
- Find the longest consistent chain of exact matches
- Fill in the gaps in the chain using Smith-Waterman

- This is the approach used by MUMmer (Delcher et al.)
- MUM - maximally unique match (see mummer.sourceforge.net)

Chaining in 1-D

- Input: multiple overlapping intervals on a line
- Output: highest weight set of non-overlapping intervals
- Weight could be length of interval, or Smith-Waterman score, etc.

Chaining in 1D

- Basic idea - dynamic programming
- $\mathrm{V}[j]$ - weight of best chain ending with interval j
- $\mathrm{V}[\mathrm{j}]=\max _{\mathrm{k}<\mathrm{j}, \text { intervals } \mathrm{k} \& \mathrm{j} \text { do not overlap }}(\mathrm{V}[\mathrm{k}]+$ weight $(\mathrm{j}))$
- i.e. find all possible ways of building a chain ending at j and pick the best one (the key to all dynamic programming algorithms)
- Where do we find the answer? largest value in V array
- How do we find the actual chain? backtracking
- What is the running time?
$O\left(n^{\wedge} 2\right)$

Chaining in 1D

- Sort the endpoints (starts, ends) of the intervals
- For every interval j , store $\mathrm{V}[\mathrm{j}]$ - best score of a chain ending in j
- MAX - store highest V[j] seen sofar
- Process endpoints in increasing order of x coordinate
- If we encounter left end (start) of interval j
$-\mathrm{V}[\mathrm{j}]=$ weight $(\mathrm{j})+\mathrm{MAX}$
- If we encounter right end (end) of interval j
$-\mathrm{MAX}=\max \{\mathrm{V}[j], \mathrm{MAX}\}$
Running time?
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ - from sorting

Chaining in 1-D

- Input: multiple overlapping intervals on a line
- Output: highest weight set of non-overlapping intervals
- Weight could be length of interval, or Smith-Waterman score, etc.

- Rationale? The pattern can have multiple inconsistent exact matches to the text - we want to pick a longest consistent set

Path "planning" and dynamic programming

- One intuitive way to think about dynamic programming
- similar to finding shortest path between two points
- at each "point" ask - what are all possible ways to get here?
- pick the best (shortest, fastest, etc.)

Chaining in 2-D

- Easy to do in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ (n - \# of intervals)
- View alignments as "boxes"
- All boxes in a chain must follow each other in a "diagonal" order, i.e. the range of the x coordinates and y coordinates of any two boxes in a chain cannot overlap
- Similar to 1-D approach except at each step we must check if current box can extend any of the previously built chains
- $\mathrm{V}[\mathrm{j}]=\max _{\text {all previous boxes } k}\{\mathrm{~V}[\mathrm{k}]+$ weight $(\mathrm{j})\}$
- More complex algorithm leads to $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ running time

Suffix trees + dynamic programming

- Idea: find inexact seeds (rather than exact matches)
- Observation: if two sequences match within x\% identity there must be some short subsequence that also matches with at least \times \% identity

- Why is this useful? You can backtrack quickly if error rate exceeded (short sequences will have to be almost perfect).
suffix trees + dynamic programming

