
CMSC423 Fall 2009 1

CMSC423: Bioinformatic Algorithms,
Databases and Tools

Alignment heuristics

CMSC423 Fall 2009 2

Heuristics
• What if limit the # of differences allowed? E.g. we

expect the sequences to be very similar.
• Compute 'banded' alignment – stay within # of

differences (k) from the diagonal.
• Optimal alignment cannot stray too far from diagonal

• What if we do not know k? Do binary search to find it

k
k

O(km) running
time and space

CMSC423 Fall 2009 3

Exclusion methods
• Assume P must match T with at most k errors. Find

places in T where P cannot match.
• Split P into floor(n/k+1)-sized chunks.
• If P matches T with less than k errors => at least one

chunk matches with no errors
• Use any exact matching algorithm to find places

where a chunk matches T, then run dynamic
programming in that vicinity.

• Running time, on average O(m)

CMSC423 Fall 2009 4

Exclusion methods

Exact match

Putative alignment
Text

Pattern

CMSC423 Fall 2009 5

"Famous" approaches
• FASTA (Pearson et al.)

– Take all k-mers (substrings of length k) from Pattern and
identify whether and where they match in the Text

– Assume the k-mer starting at pos'n i in Pattern matches at
position j in Text, remember (j – i) – the diagonal on which
the match occured

– Identify "heavy" diagonals – diagonals where many k-mers
match, then refine the diagonals with Smith Waterman

– Also look for off-diagonal matches to account for gaps

CMSC423 Fall 2009 6

"Famous" approaches
• BLAST (Altschul et al.)

– Find short k-mer matches
– Also search for possible inexact matches, e.g. all k-mers

within 1 difference from current one.
– Extend exact matches with Smith-Waterman algorithm
– Assign probabilistic scores to matches: what is the

probability of finding a match with the same S-W alignment
score just by chance (e.g. matching a random string)?

Aside: viewing alignments with dot-plots

axes – two sequences/genomes, 'dots' – regions that match in the two
genomes

CMSC423 Fall 2009 8

Chaining approach
• Extends the FASTA idea
• Search for exact matches
• Find the longest consistent chain of exact matches
• Fill in the gaps in the chain using Smith-Waterman

• This is the approach used by MUMmer (Delcher et al.)
• MUM – maximally unique match (see

mummer.sourceforge.net)

CMSC423 Fall 2009 9

Chaining in 1-D
• Input: multiple overlapping intervals on a line
• Output: highest weight set of non-overlapping intervals
• Weight could be length of interval, or Smith-Waterman score,

etc.

CMSC423 Fall 2009 10

Chaining in 1D
• Basic idea – dynamic programming
• V[j] – weight of best chain ending with interval j
• V[j] = maxk < j, intervals k & j do not overlap(V[k] + weight(j))
• i.e. find all possible ways of building a chain ending at

j and pick the best one (the key to all dynamic
programming algorithms)

• Where do we find the answer?
• How do we find the actual chain?
• What is the running time?

largest value in V array

backtracking

O(n^2)

CMSC423 Fall 2009 11

Chaining in 1D
• Sort the endpoints (starts, ends) of the intervals
• For every interval j, store V[j] – best score of a chain ending in j
• MAX – store highest V[j] seen sofar
• Process endpoints in increasing order of x coordinate
• If we encounter left end (start) of interval j

– V[j] = weight(j) + MAX
• If we encounter right end (end) of interval j

– MAX = max{V[j], MAX}
• Running time?

O(n log n) – from sorting

CMSC423 Fall 2009 12

Chaining in 1-D
• Input: multiple overlapping intervals on a line
• Output: highest weight set of non-overlapping intervals
• Weight could be length of interval, or Smith-Waterman score,

etc.

• Rationale? The pattern can have multiple inconsistent exact
matches to the text – we want to pick a longest consistent set

T

P

CMSC423 Fall 2009 13

Path “planning” and dynamic programming
• One intuitive way to think about dynamic programming

– similar to finding shortest path between two points
– at each “point” ask – what are all possible ways to get here?
– pick the best (shortest, fastest, etc.)

DCDC

Frederick

Baltimore

Harrisburg

Philly

NYC

CMSC423 Fall 2009 14

Chaining in 2-D
• Easy to do in O(n2) (n - # of intervals)
• View alignments as "boxes"
• All boxes in a chain must follow each other in a "diagonal"

order, i.e. the range of the x coordinates and y coordinates of
any two boxes in a chain cannot overlap

• Similar to 1-D approach except at each step we must check if
current box can extend any of the previously built chains

• V[j] = maxall previous boxes k {V[k] + weight(j)}
• More complex algorithm leads to O(n log n) running time

CMSC423 Fall 2009 15

Suffix trees + dynamic programming
• Idea: find inexact seeds (rather than exact matches)
• Observation: if two sequences match within x%

identity there must be some short subsequence that
also matches with at least x% identity

• Why is this useful? You can backtrack quickly if error
rate exceeded (short sequences will have to be
almost perfect).

f(i)

l

k

e

CMSC423 Fall 2009 16

suffix trees + dynamic programming

? ? ? ? ? ?

A 3 2 1 1 ?

N 2 1 0 1 ?

A 1 0 1 2 ?

- 0 1 2 3 ?

- A NN ?

