
CMSC423 Fall 2009 1

CMSC423: Bioinformatic Algorithms,
Databases and Tools

inexact alignment
dynamic programming, gapped

alignment

CMSC423 Fall 2009 2

Inexact matching: why?
• Redundancy in genetic code: nucleotide sequence

may differ, but proteins the same

• Different amino-acid sequences still fold the same
way: function unchanged (generally changing an
amino-acid with a similar one doesn't affect protein
function)

• Aligning ESTs (RNA sequences) to DNA need to
account for gaps corresponding to exons

• Need to account for sequencing errors
• Read chap 6.1!!! (define: ortholog, paralog, homolog)

S Y P T D
TCTTATCCTACTGAT
TCATACCCCACAGAC

CMSC423 Fall 2009 3

CMSC423 Fall 2009 4

HBB_HUMAN FFESFGDLSTPDAVMGNPKVKAHGKKVL-----GAFSDGLAHLDNLKGTF
HBB_HORSE FFDSFGDLSNPGAVMGNPKVKAHGKKVL-----HSFGEGVHHLDNLKGTF
HBA_HUMAN YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL
HBA_HORSE YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL
MYG_PHYCA KFDRFKHLKTEAEMKASEDLKKHGVTVL-----TALGAILKKKGHHEAEL
GLB5_PETMA FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
LGB2_LUPLU LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL
 * : . . .:: *. : :. :

Several hemoglobins

From http://bioinfo.cnio.es/docus/courses/SEK2003Filogenias/seq_analysis/multiple.html

CMSC423 Fall 2009 5

Warm-up – Longest Common Subsequence
• Given two strings of letters, identify longest string of

letters that occurs, in the same order, in both strings

AG C GTAG
 G C G A
 GTCAG A

• Find the longest chain of 1s, moving to the right and
down

11A
G
A
C
T
G

111
11

A
1
G

1
1

11
GATGC

CMSC423 Fall 2009 6

Dynamic programming
• Idea: re-use previously computed information
• LCS[i,j] – longest common subsequence of strings

S1[1..i], S2[1..j]

11A
G
A
C
T
G

111
11

A
1
G

1
1

11
GATGC

i

j

LCS[i,j] is the maximum of:

1.if S1[i] = S2[j]
 LCS[i-1, j-1] + 1
 else
 LCS[i -1, j-1]
2. LCS[i – 1, j]
3. LCS[i, j – 1]

Goal: find LCS[m,n]

CMSC423 Fall 2009 7

Computing the LCS table

1A
G
A
C
T
G

0
1
0
0
0
A

1
G

00010
GATGC

4433221A
G
A
C
T
G

4333220
3322211

0
0
0
A

1
1
1
G

22222
22211
10010
GATGC

21A
G
A
C
T
G

20
11

0
0
0
A

1
1
1
G

10010
GATGC

Row 0 and column 0 easy to fill
Fill the rest column by column

Find the actual sequence:
trace-back pointers

CMSC423 Fall 2009 8

Extending to sequence alignment
AG-C-GTAG
-GTCAG-A-

• In LCS, mis-alignments were free
• What happens if we pay for our "mistakes"? (this

also allows us to account for "similar" amino-
acids)
– Value[A, A] = 10
– Value[A,G] = -5
– Value[A,-] = -2
– etc.

• The same dynamic programming algorithm works!

CMSC423 Fall 2009 9

The recurrences

AG-C-GTAG
-GTCAG-A-

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i],S2[j]]
 AG-C-G AG-C-G
 -GTCAG -GTCAT
2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)
 AG-C-GT
 -GTCAG-
3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)
 AG-C-
 -GTCA

CMSC423 Fall 2009 10

The dynamic programming table
Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i],S2[j]] (S1[i-1], S2[j-1] aligned)
2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)
3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)

-14-12-10-8-6-4-20-

-12
-10
-8
-6
-4
-2

-

A
G
A
C
T
G

-8
-6
-4

A

4
6
8

G

16
4
6

GATGC Value (A, A) = 10
Value (A, G) = -5
Value (A, -) = -2

Note: we only look
at 3 adjacent boxes

CMSC423 Fall 2009 11

Intuition
• What is the best way to align strings S1 and S2?
• just look at last character for now – what is it aligned

to?
S1[n]

S2[m]

S1[n]

S2[m]

S1[n]

S2[m]

AG-C-GTAG
-GTCAG-A-

CMSC423 Fall 2009 12

The recurrences

AG-C-GTAG
-GTCAG-A-

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i],S2[j]]
 AG-C-G AG-C-G
 -GTCAG -GTCAT
2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)
 AG-C-GT
 -GTCAG-
3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)
 AG-C-
 -GTCA

CMSC423 Fall 2009 13

The dynamic programming table
Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value(S1[i],S2[j]) (S1[i-1], S2[j-1] aligned)
2. Score[i – 1, j] + Value(S1[i], -) (S1[i] aligned to gap)
3. Score[i, j – 1] + Value(-, S2[j]) (S2[j] aligned to gap)

-14-12-10-8-6-4-20-

-12
-10
-8
-6
-4
-2

-

A
G
A
C
T
G

-8
-6
-4

A

4
6
8

G

16
4
6

GATGC Value (A, A) = 10
Value (A, G) = -5
Value (A, -) = -2

Note: we only look
at 3 adjacent boxes

CMSC423 Fall 2009 14

How do you output the result?
• Goal: produce the “nice” string with gaps that is shown

in the examples
• Idea: create the string backwards – starting from the

right
• As you follow backtrack pointers:

– if you follow diagonal pointer – add characters to both output
strings (aligned versions of original strings)

– if you move up – add gap character to string represented on
the y axis, add string character to string represented on x
axis

– if you move left – gap goes in string on x axis and character
in string on y axis

• When you reach (0,0) output the two aligned strings

CMSC423 Fall 2009 15

Local vs. global alignment
• Can we change the algorithm to allow S1 to be a

substring of S2?
 ACAGTTGACCCGTGCAT
 ----TG-CC-G------
• Key idea: gaps at the end of S2 are free
• Simply change the first row in the DP table to 0s
• Answer is no longer Score[n, m], rather the largest

value in the last row

CMSC423 Fall 2009 16

Sub-string alignment

00000000-

-6
-4
-2

-

T
G
C

A G

262830186
18208

810

GATGC

AGCGTAG
 CGT

CMSC423 Fall 2009 17

Local alignment
• What if we just want a region of similarity?
 ACAGTTGACCCGTGCAT
 || || |
 GTCATG-CC-GAGATCG
• First row and column set to 0s
• Allow alignment to start anywhere:
Score[i,j] = max{0, case 1, case 2, case 3}
• Answer is location in matrix with highest score

CMSC423 Fall 2009 18

Local alignment

00000000

0
0
0
0
0
0

C
T
G
C
T
C

30
20

A

0

G

10

GATGC

AGCGTAG
 |||
CTCGTC

CMSC423 Fall 2009 19

Various flavors of alignment
• Alignment problem also called "edit distance" – how

many changes do you have to make to a string to
convert it into another one.

• Edit distance also called Levenshtein distance
• Local alignment – Smith-Waterman
• Global alignment – Needleman-Wunsch

CMSC423 Fall 2009 20

Gap penalties

CMSC423 Fall 2009 21

How much do we pay for gaps?
• In the edit-distance/alignment framework
Cost(n gaps in a row) = n * Cost(gap)

• This doesn't work for e.g. RNA-DNA alignments
ACAGTTCGACTAGAGGACCTAGACCACTCTGT
 TTCGA----------TAGACCAC
• Affine gap penalties
Cost(n gaps in a row) = Cost(gap open) + n * Cost(gap)
• Gap opening penalty is high, gap extension penalty is

low (once we start a gap we might as well pile more
gaps on top)

CMSC423 Fall 2009 22

Arbitrary gap penalties
• Assume gap penalty given by function f(k) for gap of

length k
• Can change traditional dynamic programming as

follows:
1. Score[i-1, j-1] + Value(S1[i],S2[j]) (S1[i-1], S2[j-1] aligned)
2. max k Score[i – k, j] + f(k) (S1[i-k .. i] aligned to gaps)
3. max k Score[i, j – k] + f(k) (S2[j-k .. j] aligned to gaps)

• Note: if f(a + b) > f(a) + f(b) we need to make sure
Score[i-k, j] did not end in a gap – stay tuned

CMSC423 Fall 2009 23

Dynamic programming solution
• Traditional 1-table approach doesn't work anymore
• Instead, use 4 tables:

– V – stores value of best alignment between S1[1..i], S2[1..j]
– G – best alignment between S1[1..i], S2[1..j] s.t. S1[i] aligned

with S2[j]
– E – best alignment between S1[1..i], S2[1..j], s.t. alignment

ends with gap in S1
– F – best alignment between S1[1..i], S2[1..j], s.t. alignment

ends with gap in S2
• V[i,j] = max(E[i,j], F[i,j], G[i,j])
• As in traditional approach, find box in V matrix where

V[i,j] is maximal.

CMSC423 Fall 2009 24

Affine gap recurrences
• V[i,j] = max[E[i,j], F[i,j], G[i,j]]
• G[i,j] = V[i-1, j-1] + Value(S1[i], S2[j])

– irrespective how we got here (hence use of V), S1[i] and
S2[j] are matched

• E[i,j] = max{E[i, j-1], V[i, j-1] – GapOpen} – GapExtend
– either we add a gap in S1 to an existing one (E-GapExtend)
– or we add a gap in S1 when there was none (V-GapOpen-

GapExtend)
• F[i,j] = max{F[i-1, j], V[i-1, j] – GapOpen} – GapExtend

– either we add a gap in S2 to an existing one (F–GapExtend)
– or we add a gap in S2 when there was none (V-GapOpen-

GapExtend)

CMSC423 Fall 2009 25

Running times
• All these algorithms run in O(mn) – quadratic time
• Note – this is significantly worse than exact matching
• Next we'll talk about speed-up opportunities

• BTW, how much space is needed?

• If we only need to find the best score (not the exact
alignment as well) – O(min(m,n))

• If we need to find the best alignment – elegant divide
and conquer algorithm leads to linear space solution.

CMSC423 Fall 2009 26

Where do the alignment scores come from?
• PAM matrices

– PAM1 – based on frequency of mutations between closely
related proteins (within 1 "evolutionary step")

– PAM 2 - ... within 2 evolutionary steps
– ... PAM 250 – commonly used

• BLOSUM matrices
– Frequency of mutations between proteins that are x% similar
– BLOSUM100 – based on proteins that are exactly the same

(e.g. score(A,A) is defined but not score(A,G))
– BLOSUM62 – commonly used

• gap scores usually determined empirically

CMSC423 Fall 2009 27

BLOSUM62

CMSC423 Fall 2009 28

Questions
• How would you modify the dynamic programming

algorithm described in the class in order to perform
alignments anchored at the beginning of the
sequences (i.e. not penalize gaps at the end of the
sequences)?

• How would you modify the dynamic programming
algorithm to find 'overlap' alignments – the alignment
must include one end from each of the sequence (see
below)?

