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To assess the potential of protein function prediction in environ-
mental genomics data, we analyzed shotgun sequences from four
diverse and complex habitats. Using homology searches as well as
customized gene neighborhood methods that incorporate inter-
genic and evolutionary distances, we inferred specific functions for
76% of the 1.4 million predicted ORFs in these samples (83% when
nonspecific functions are considered). Surprisingly, these fractions
are only slightly smaller than the corresponding ones in completely
sequenced genomes (83% and 86%, respectively, by using the
same methodology) and considerably higher than previously
thought. For as many as 75,448 ORFs (5% of the total), only
neighborhood methods can assign functions, illustrated here by a
previously undescribed gene associated with the well character-
ized heme biosynthesis operon and a potential transcription factor
that might regulate a coupling between fatty acid biosynthesis and
degradation. Our results further suggest that, although functions
can be inferred for most proteins on earth, many functions remain
to be discovered in numerous small, rare protein families.

fatty acid � heme � neighborhood � environmental genomics �
metagenome annotation

Recent years have seen an explosion in the amount of shotgun
sequence data gathered from diverse natural environments.

Since 2004, almost 2 billion base pairs resulting from published
large-scale metagenomics sequencing projects have been depos-
ited [as of January of 2007 (1–8)], eclipsing the entire 764 Mbp
of previously sequenced microbial genomes (9). Large-scale
environmental sequencing efforts have the potential to consid-
erably enhance our understanding of cellular processes, identify
ubiquitous as well as unique biological functions in each envi-
ronment, and close the gaps in our knowledge between genotype,
phenotype, and environment. Until the identified ORFs are
correctly annotated with biological functions, however, we are
simply left with a vast amount of information but no contextual
knowledge, analogous to the early days of genome sequencing.

Currently, characterizing an unknown sequence involves com-
paring it to sequences or protein domains of known function in
public databases, usually by using BLAST (10) or other homol-
ogy search tools (11). By applying BLAST-based annotation
methods to newly sequenced genomes, functions can typically be
assigned to �70% of the gene products (11–13). Unfortunately,
these predictions have been estimated to include 13–15% data-
base propagation errors (14) and are only possible if the un-
known sequence has at least one BLAST hit. To complement
homology-based function prediction, particularly in prokaryotes,
additional information from genomic neighborhood (15, 16),
phylogenetic profiles (17), gene coexpression (18), and gene
fusion (19, 20) has been used and combined (18, 21). As yet, only
the exploitation of genomic neighborhood (including gene fu-
sions) is feasible in the context of metagenomic shotgun data.

In the first large-scale shotgun metagenomics projects from
four diverse and complex environments [tropical surface water
from the Sargasso Sea near Bermuda (2), farm soil from
Minnesota (4), an acidophilic biofilm from an iron ore mine in
northern California (1), and three samples from ‘‘whale fall’’

carcasses on the deep Pacific and Antarctic ocean floor (4)],
functions have been predicted based on sequence similarity for
only 27–48% of the 1.4 million genes in the different samples
[see supporting information (SI) Table 1]. This implies that for
the majority of proteins in the environment, functions remain
unknown, and no attempt has yet been made to discover novel
functionality. Furthermore, for each project, different methods,
parameters, and even definitions of function were used, which
are often not easily accessible to the community, making a
comparison of the different samples difficult. To be able to
comprehensively predict functions from various metagenomics
samples and to get a consistent overview of function in different
environments, we developed a sensitive prediction protocol that
complements BLAST- and domain-based function predictions
with newly developed and adapted gene neighborhood methods.
Applying this protocol to the samples revealed a considerable
predictive power, indicating that function can be inferred for
most of the genes on earth; yet the majority of functions appear
to reside in numerous rare, small protein families that remain
largely unexplored.

Results and Discussion
An Operational Definition of Protein Function. Biological function
is a fuzzy term summarizing a complex concept applicable to
different spatial scales (22, 23). At the molecular and (sub-)
cellular level, an operational framework with clearly defined
terms and thresholds is therefore required when attempting to
quantify protein function. To infer specific function from exist-
ing database annotations by using homology, we require simi-
larity to an environmental (partial) ORF �60 bits, correspond-
ing roughly to an e-value of 10�8 in Uniref90 searches (4). This
level of sequence similarity is rather strict in terms of homology
identification but without further analysis may be insufficient to
distinguish between paralogs and orthologs, thus not capturing
all functional features such as enzyme substrate specificity. It is,
however, sufficient to capture basic functionality.

We used a hierarchical classification scheme, favoring manual
annotation, to divide environmental ORFs and, for comparison,
124 prokaryotic proteomes into four categories based on the
level of functional annotation possible: (i) those with strong
similarity to, or in the genomic neighborhood of, a gene with
specific functional annotation; (ii) those with strong similarity to
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genes with nonspecific functional information, weak but signif-
icant similarity to genes with any functional annotation, or in the
genomic neighborhood of either of these; (iii) those with strong
similarity to, or in the genomic neighborhood of, a gene of
unknown function; (iv) those with neither similarity to sequences
in annotated databases nor significant genomic neighborhood
(Fig. 1).

We used sequence similarity to infer functional information
from the KEGG (24), COG (12), UniRef90 (25), SMART (26),
and Pfam (27) databases (see Materials and Methods for param-
eter choices, benchmarks, and definitions of functional annota-
tion). We used gene neighborhood evidence from the STRING
database (21) and adapted existing gene neighborhood function
prediction methods, based on intergenic distance and evolution-
ary conservation, for use in fragmented shotgun metagenomics
data. First, we exploited the fact that intergenic distances tend
to be shorter between genes of the same operon than between
operons (28). Although several operon prediction methods have
been introduced that are based solely on intergenic distances
(28–31), they are species-specific, trained with experimentally
verified transcript information (28), and/or require the context
of a complete genome. Here, we calibrated directly on each
sample to establish the likelihood of being functionally associ-
ated, given a positional distance within a read. Second, we used
the fact that neighboring ORFs are more likely to be functionally
associated if they are conserved over long evolutionary distances
(15, 16, 32). We recorded multiple occurrences of neighboring
genes, measured the sequence similarity of the respective neigh-
borhoods to each other, and derived a metric based on evolu-
tionary distance. We then combined these measures for inter-
genic and evolutionary distance to predict functional
relationships between genes in the metagenomic data (see
Materials and Methods).

Consistent Functional Characterization of ORFs in Four Environmental
Data Sets. By combining homology searches and neighborhood
methods, we were able to infer specific functional information
for 76% of the 1.4 million predicted environmental ORFs and a

more general level of functional information for another 7%
(dark and light green segments respectively of the outermost ring
in Fig. 2; see also SI Table 2 ). By using sequence similarity alone,
a specific function can be inferred for almost two-thirds (65%)
of the ORFs, and a general function for another 13% (inner
circle Fig. 2). Neighborhood-based methods provide functional
information for 30% of the ORFs (green segments in middle
ring; Fig. 2), complementing similarity-based molecular charac-
terizations with functional interactions. They also provide func-
tional information for almost a quarter of the ORFs (75,448),
where homology-based methods fail. This 30% of neighborhood-
based predictions is considerably lower than the 56% achieved
when the same methods are applied to the 124 prokaryotic
genomes (SI Table 3). However, only 47% of the ORFs in the
metagenomic data sets have a neighbor in the same transcription
direction, as compared with 88% in completely sequenced
genomes (SI Table 4), which implies that the predictive power of
neighborhood methods is comparable in genomes and metage-
nomes. Indeed, the combined methods perform almost equally
well in metagenomes (83% functional characterization) as in
fully sequenced genomes (86%). Moreover, the metagenomic
ORFs that cannot be characterized by similarity are significantly
shorter than those that can (SI Fig. 5). Some of these may be
fragmented ORFs that are too short to assign significant simi-
larity; others may have resulted from erroneous ORF predic-
tions. The latter would imply that the true fraction of gene
products for which functions can be predicted is even higher. In
either case, the quality of predictions should improve in the
future because sequence coverage is likely to increase in met-
agenomics projects, allowing more reads to be assembled into
longer contigs.

In the original reports of the metagenomics data sets, specific
functions were assigned to 27–48% of the predicted gene
products (1, 2, 4), indicating marked differences in the function
prediction protocols caused by various technical issues such as
the stringency of BLAST cutoffs, the choice of functional
databases, and variations in gene calling (a comparison is
presented in SI Table 1; for an expanded comparison see ref. 9).
Because our benchmarks and manual confirmations of param-
eter settings show a negligible false-positive rate (see Materials
and Methods), we believe that the near doubling in functional
assignments is not caused by a looser function definition or more
spurious assignments but is due to better utilization of existing
functional information. The latter uncovers marked trends such
as overrepresentation at the gene, family, or pathway level, in
line with earlier studies (4) (SI Table 5). For example, we find
that bacterial chemotaxis, f lagellar assembly, and type III se-
cretion genes are 3-fold more frequent in the genomes than the
metagenomes (dominated by the surface sea water data set),
perhaps because of the futility of bacterial motility in strong
ocean currents. On the other hand, genes involved in amino acid
metabolism as well as in the biosynthesis of nucleotides, carbo-
hydrates, and lipids are significantly underrepresented in the
genomes as compared with the metagenomes, perhaps because
of the bias toward sequencing obligate pathogens, which tend to
acquire these compounds from their hosts.

Comparison of Environmental Samples. Among the four environ-
ments, the fraction of functional assignments differs consider-
ably as it does between organisms (Fig. 2 and SI Figs. 6 and 7).
In the surface sea water, specific functions are inferable for 82%
of ORFs (dark green sections in Fig. 2); the corresponding
fraction in whale fall is 66% and in soil only 53%. These
differences can be partially attributed to inherent differences in
the sequence data: for example, the average read length of the
sea water data is longer than that of soil [818 bp vs. 673 bp after
quality filtering (2, 4)] and 60% of the sea water reads can be
assembled into longer contigs compared with �1% in soil (33).
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Fig. 1. Flow chart of function prediction procedure. By using homology to
genes in the KEGG, COG, and UniRef90 databases, ORFs were divided into four
categories based on the level of functional annotation possible; (i) specific
functional annotation: ORFs similar to genes with specific functional infor-
mation; (ii) nonspecific functional annotation: ORFs similar to genes that have
been characterized at a general level or low similarity; (iii) no functional
annotation but member of an existing family: ORFs with homologs in one of
the databases but no functional information (e.g., ‘‘conserved hypothetical’’);
(iv) singletons: ORFs that have no significant similarity to known sequences.
ORFs containing domains from the SMART and Pfam A databases were
upgraded to having nonspecific annotation where applicable. Finally genomic
neighborhood methods were used to infer functional links between ORFs and
upgrade the functional annotation accordingly.
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Also, environments have been previously characterized to dif-
ferent degrees, and for some environments, complete genome
sequences are available that closely resemble those from the
environment [e.g., SAR11 as a frequent ocean bacterium (34)].
This means not only more gene context in a certain environment
but also more BLAST assignments for short fragmented ORFs
and hence more reliable gene predictions. Finally, a major
fraction of the acid mine sample is comprised of Archaea, which
are generally less functionally characterized than bacteria, thus
lowering our functional understanding of the sample. Neverthe-
less, we believe that most differences between the environments
are caused by multiple effects linked to genuine diversity in
phylogeny and lifestyle. For example, genomes of species in the
sea water samples are smaller than in soil, with a higher fraction
of essential, well characterized genes (33), but they also evolve
faster (35), which should make homology searches less sensitive.
Farm soil might supply the most stressors to microbial life
because of its high population density, microhabitats, and phys-
ical and systemic perturbations (e.g., temperature, nutrient
availability, and pH) (36), leading to a broad repertoire of
stress-response phenotypes with hitherto uncharacterized func-
tions. Similarly, the unusual ecological niche created by a
deep-sea whale carcass, with its extreme conditions of darkness,
cold, and high pressure, lead to highly specialized microbial
adaptations such as barotolerance and temperature-induced
lipid fluidity (37) that do not resemble those in other environ-
ments or genomes.

Predicting Functional Novelty: In-Depth Analysis of Two Neighbor-
hood-Based Findings. Whereas homology-based methods require
additional analysis to identify novel functions (e.g., via novel

subgroups in a characterized sequence family), neighborhood
methods can directly provide novel functional associations.
Novelty can be obtained either by (i) seeing unexpected func-
tional coupling of known genes or (ii) assigning unknown genes
to known processes. The first is evident in the fact that there are
as many as 5,851 pairs of neighboring COGs unique to metage-
nomes, even though these COGs occur individually in the 124
prokaryotic genomes, implying many novel functional interac-
tions. These frequently include enzymes involved in amino acid
biosynthesis with novel links to numerous protein degradation
and regulatory proteins, probably reflecting the different nutri-
tional constraints (SI Table 6). The second can be seen in the
75,448 ORFs (5% of the total) that are solely characterized by
neighborhood. Here, we provide detailed functional annotation
for two families: a previously uncharacterized gene family asso-
ciated with a well known pathway (heme biosynthesis) and a
transcription factor, unique to the Sargasso Sea data set, that
potentially regulates the coupling of two opposing processes
(fatty acid biosynthesis and degradation). These and other
functional predictions, including annotations for nearly half a
million previously uncharacterized proteins, are available online
(www.bork.embl.de/Docu/harrington).

Neighborhood information can help characterize a gene fam-
ily if members of that gene family occur next to different genes
belonging to the same pathway in different species. By using such
a query, we discovered members of a large uncharacterized gene
family (COG1981) with several hundred ORFs in the surface sea
water and whale fall samples, adjacent to various enzymes from
the well studied heme biosynthesis pathway (Fig. 3a). Heme
feeds into the synthesis of both cytochromes and chlorophyll and
thus plays a key role in enzymatic reactions, energy production,

Environments Combined Surface Sea Water

Minnesota Soil

Whale Fall

Acid Mine

124 Prokaryotic Genomes

Combined

Similarity
Function Assignment - Specific

ORF can be mapped to KEGG, a characterized COG or a 
characterized UniRef cluster

Function Assignment - Non-Specific
ORF can be mapped to a COG from the ‘R’ functional category, 
contains a SMART or Pfam A domain, or has remote similarity to a 
characterized UniRef cluster

No Function Assignment - Family
ORF can be mapped to a COG from the ‘S’ functional category, or 
has remote similarity to an uncharacterized UniRef cluster

No Function Assignment - Singleton
ORF cannot be characterized by similarity

Neighborhood
Function Assignment - Specific

ORF is adjacent to one with a specific function assignment or can be 
mapped to a COG which can be characterized by neighborhood in 
STRING

Function Assignment- Non-Specific
ORF is adjacent to one with a non-specific function assignment

No Function Assignment - Family
ORF is adjacent to one that belongs to an uncharacterized family

No Function Assignment - Singleton
ORF has no neighborhood in the correct orientation above the score 
threshold or is adjacent to an ORF that cannot be characterized by 
similarity

Fig. 2. Protein function prediction in genomes and metagenomes. Many proteins can be functionally characterized in both data sets. The degree of functional
characterization for four metagenomic data sets is shown on the left and for 124 prokaryotic genomes on the right. The inner pie chart represents the level of
functional characterization possible by using the homology-based approach. The middle ring shows the level of functional characterization possible by using
neighborhood methods. The outer ring summarizes the combined level of characterization possible. Surprisingly, it implies that most metagenomic ORFs (83%
of the data) can be functionally characterized, similar to the level possible in fully sequenced genomes.
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and metabolic regulation (38). In addition, it functions as a
prosthetic group to proteins involved in bacterial stress response,
oxidative damage, and virulence (39). Sequence analysis of the
uncharacterized family reveals that it comprises hydrophobic,
putative membrane-associated proteins that are unlikely to have
enzymatic functions. They might thus be implicated as scaffold-
ing proteins in tethering the pathway to the membrane and/or
enabling sufficient substrate fluxes.

Whereas the heme-associated gene family had previously
been observed in fully sequenced genomes, another family of
20 members was found exclusively in the surface sea water
samples by using our clustering procedure (see Materials and
Methods). Even though no homology could be found by using
our automated methods, detailed analysis revealed weak but
significant similarity to a family of helix–turn–helix (HTH)
transcription factors. An examination of its neighboring genes
implies that this family is found in a variety of species, the most
closely related being Actinobacteria. As the genes are on
various contigs with differing gene orders, we could assign it
to an entire operon that additionally contains three down-
stream genes consistently occurring in the same orientation.
The first downstream gene of unknown function (NOG05011)
has been observed in completely sequenced genomes; in-depth
sequence and secondary structure analyses suggest an enzy-
matic function (data not shown). The second and third genes
of this potential operon (COG1024 and COG1960) catalyze
successive steps of the �-oxidation of fatty acids (usually
involved in degradation) (38, 40). Interestingly, this invariant
operon, apparently controlled by the newly predicted tran-
scriptional regulator, frequently occurs downstream of various
genes involved in fatty acids biosynthesis (Fig. 3b). Thus,
context-based methods predict a coupling between fatty acid
degradation and biosynthesis, whereby the previously unde-
scribed gene might provide the regulation of this link. It is

intriguing to speculate that this coupling of two antagonistic
processes is an adaptation to repeatedly changing environ-
mental conditions. For instance, strongly regulated circadian
rhythms are followed by several marine bacteria (41). These
bacteria actively migrate to different depths in a periodic
fashion to balance the efficient usage of light for energy against
the danger of DNA damage (42, 43). Energy storage during the
light-dependent phase by biosynthesis of fatty acid and energy
release in the light-independent phase could thus be a regu-
lated switch during locomotion from light to dark and vice
versa.

Functional Prediction vs. Functional Diversity. As more environ-
ments are explored, we expect that core protein functions (for
example, translational machinery) will be seen repeatedly and
will dominate every sample. Novel, rare, and perhaps environ-
ment-specific functions, on the other hand, might not be classi-
fiable because they are not yet captured by the experimental
studies that underlie most current knowledge about biological
function. To reconcile our gene-centric view of the data with a
function-based one, we performed an all-against-all similarity
search of all predicted ORFs in all four environments, clustered
the results into gene families, and recorded their functional
status according to our operational definition (see Fig. 4 and
Materials and Methods). We find that specific functional knowl-
edge is indeed heavily skewed toward large families: functionally
characterized families make up 89% of the largest families (200
or more members), whereas uncharacterized ones make up 72%
of the smallest families (three or fewer members). Thus, al-
though most of the proteins in the environmental samples can be
functionally characterized because they belong to well studied
large gene families, numerous distinct, rare functions remain to
be identified. Because these are likely to be adaptations to
specific environmental constraints, they should have the poten-
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Fig. 3. Prediction of function in previously uncharacterized gene families by using genomic neighborhood. Whereas homology-based approaches quantify the
known functions, neighborhood approaches reveal functional novelty, even in conjunction with well known processes. (a) A putative transmembrane protein
belonging to an uncharacterized COG (COG1981 shown in red) that consistently cooccurs with members of the well characterized heme biosynthesis pathway
(colored blue). The putative membrane-associated protein occurs on 174 distinct contigs in the surface sea water and whale fall data sets that can be grouped
into at least 15 unique operon arrangements, strongly suggesting a role in this process. (b) A predicted putative regulator, shown in red, that links fatty acid
biosynthesis (upstream, colored green) with fatty acid degradation (downstream, colored blue), a functional link not seen in fully sequenced genomes. The
regulator appears on 20 distinct contigs in the sea water, of which there are at least five unique operon arrangements.
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tial for exploitation in biotechnology and medicine. Of all of the
families (including singletons), functions can be assigned for only
32%, but this fraction contains 85% of all of the proteins studied
here. If singletons are disregarded, the fraction of characteriz-
able proteins in the complex environments studied increases
further, from 72% to 79%. Although these remain qualitative
assignments of low resolution (i.e., substrate specificity or cel-
lular roles are often not specified), even general molecular
classifications such as ‘‘dehydrogenase’’ imply some basic func-
tional understanding, and more than a quarter of these are
further complemented by associations to other genes predicted
by the neighborhood method. Despite this remarkably high
coverage, our functional knowledge about the proteins on earth
can be further increased by deeper sequencing that generates
longer assemblies and less-fragmented ORFs. This should im-
prove gene predictions and reduce the number of uncharacter-
ized singletons that are skewed toward short ORFs. Moreover,
longer contigs would allow the application of indirect neighbor-
hood methods (that is, operon membership), which we have not
considered here. This huge potential to functionally characterize
the vast majority of proteins in current and upcoming complex
samples calls for strategies to capture functional novelty, for
example by experimental procedures that enrich in those many
small and rare families of unknown functions, analogous to
normalizations of EST libraries introduced in the early 1990s (2).
Coupled with systematic biochemical screens, a census of the
repertoire of protein functions on earth (at least at the low level
of resolution currently used in sequence annotation) might thus
be feasible in the very near future.

Materials and Methods
Sequence Data and Similarity Searches. We analyzed published
microbial shotgun sequence data from four environmental sam-
ples, totaling 1,438,944 genes: 1,086,400 genes from tropical
surface water from the Sargasso Sea (2), 183,586 genes from
farm soil from Minnesota (4), 122,146 genes from isolated whale
fall carcasses (4), and 46,862 genes from an acidophilic biofilm
from an iron ore mine (1). In parallel, we analyzed 344,619 genes
from 124 prokaryotic genomes from the STRING database (21)

(SI Table 7). Analyses were carried out at three different levels
of stringency, the figures reported here use a bit score cutoff of
60 bits for orthology assignment (a prerequisite to predict
specific functions) and 40 bits for homology assignment (for
details of parameter exploration see SI Text). To map function-
ally characterized domains to metagenomic ORFs, we scanned
the HMM profile signatures from Pfam (27) and SMART (26)
against the metagenomic sequences by using HMMER (http://
hmmer.wustl.edu/) software and applied the corresponding
family-specific cutoffs.

Gene Family Analysis. We grouped genes from all four environ-
mental data sets into 206,217 gene families by first construct-
ing a single-linkage graph of an all-against-all BLAST (60-bit
cutoff), with nodes representing proteins, and edges repre-
senting BLAST hits between proteins weighted by BLAST bit
scores. This graph was then clustered by using Markov chain
linkage clustering with an inf lation value of 1.1 (44, 45) (SI
Table 8).

Function Prediction Using Sequence Similarity. ORFs were assigned
to KEGG pathways and COGs by using the method described by
Tringe et al. (4) using a 60 bit cutoff. For the 124 prokaryotic
genomes, the KEGG and COG assignments from the STRING
database were used. ORFs were also compared against the
UniRef90 database, divided into functionally characterized and
uncharacterized clusters (see SI Text) and annotated with do-
mains from the SMART and Pfam databases. These annotations
were combined in a hierarchical manner, favoring manually
annotated databases, placing each ORF into one of the above
categories. By definition, any ORF that mapped to KEGG was
considered to have a specific function assigned. Of the remaining
ORFs, those that mapped to a COG were considered to have a
specific function assigned, with the exception of those in func-
tional classes ‘‘R’’ and ‘‘S,’’ which were considered to have
nonspecific and no function assigned, respectively. The remain-
ing ORFs were considered to have specific functional annotation
if they had strong similarity (�60 bits) to functionally charac-
terized UniRef90 clusters, nonspecific functional annotation if
they contain a domain from the SMART or Pfam A database or
have remote similarity (�40 bits) to functionally characterized
UniRef90 clusters. All other ORFs were considered to have no
function assigned, those with similarity to uncharacterized Uni-
Ref90 clusters were considered to be part of a family, and the rest
singletons.

Function Prediction Using Genomic Neighborhood. Using the contig
positions of the ORFs in each data set, we constructed a list
of pair-wise neighborhoods. For this analysis, we considered
only codirectionally transcribed genes (for the treatment of
overlapping genes, see SI Text). To investigate the conserva-
tion of neighborhoods, we constructed a graph for each set of
homologous neighborhoods. An edge was placed between two
neighborhoods if there were BLAST hits �60 bits between
both pairs of genes, except in cases where a gene from one
neighborhood hit both genes in the other. This graph was then
used to construct clusters of neighborhoods representing a
conserved gene pair. To estimate the evolutionary distance
over which a neighborhood is conserved, we adapted a weight-
ing scheme used for multiple sequence alignment (46) to derive
a score with the property that it will be low for small clusters
of closely related sequences and large for clusters with dis-
tantly related sequences. For each metagenomic data set, we
then constructed a benchmark set of pair-wise neighborhoods
where both genes have a KEGG mapping. At each intergenic
and evolutionary distance within the benchmark set, we de-
termined the proportion of neighborhoods that map to the
same KEGG pathway. This relationship was then interpolated

0%
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100%
specific function
no (specific) function

10

100

1000

average gene 
family size

Fig. 4. Dependence of functional characterization on family size. Colored
bars in this histogram of gene families binned by size represent the proportion
of families with specific functional annotation (if �20% of the members were
classified as such; green) and no specific annotation (a combination of non-
specific and no functional annotation; red). Gray bars indicate average gene
family size in that bin. Only two of 174,124 bins containing singletons are
shown for clarity. Most large gene families have a known function, whereas
many small families remain uncharacterized.
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and used to derive a value P for each neighborhood in the data
set, corresponding to the probability that a pair of genes in a
neighborhood is functionally related (SI Figs. 6 and 8–11 and
SI Table 2). We also applied this method to individual
organisms (SI Figs. 7 and 12 and SI Table 3) to assess the effect
of species-specific genome architectures on the method. It is
clear that the relationship between intergenic and evolution-
ary distance and P is highly species-specific. The vast majority
of P values exceed the random expectation (16%, the proba-
bility that a random pair of genes map to the same KEGG
pathway). To ensure that we were dealing with high quality

predictions, we considered a pair of genes to be functionally
linked only if the P value was �0.4 [found to have an accuracy
approaching 70% at the level of functional modules (47)]. For
the ORFs that map to COGs, additional neighborhood infor-
mation was taken from the STRING database (see SI Text).
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