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Metagenomics is a rapidly emerging field of research for studying

microbial communities. To evaluate methods presently used to

process metagenomic sequences, we constructed three simulated

data sets of varying complexity by combining sequencing reads

randomly selected from 113 isolate genomes. These data sets

were designed to model real metagenomes in terms of

complexity and phylogenetic composition. We assembled

sampled reads using three commonly used genome assemblers

(Phrap, Arachne and JAZZ), and predicted genes using two

popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER).

The phylogenetic origins of the assembled contigs were

predicted using one sequence similarity–based (blast hit

distribution) and two sequence composition–based (PhyloPythia,

oligonucleotide frequencies) binning methods. We explored the

effects of the simulated community structure and method

combinations on the fidelity of each processing step by

comparison to the corresponding isolate genomes. The simulated

data sets are available online to facilitate standardized

benchmarking of tools for metagenomic analysis.

Recent advances in sequencing technology are mediating a transi-
tion from organismal to community genomics (metagenomics),
allowing us to directly examine the molecular blueprints of micro-
bial communities. Metagenomic data processing follows essentially
the same steps as processing of shotgun sequences generated for
isolate genomes, starting with the assembly of sequence reads,
followed by gene prediction and functional annotation. The gen-
ome sequence of an isolated microorganism, however, is typically
derived from a clonal population, whereas metagenomic projects
sample the genomes of multiple species and strains present in
highly variable abundance in a microbial community. Quality
control steps that detect assembly and gene-finding errors, such
as finishing and gap closure, or manual curation of genes and
functions, are mostly omitted. The final output of this process is
similar to that generated for draft isolate genomes and includes
scaffolds, contigs and unassembled reads. An additional step of
assigning scaffolds and contigs to phylogenetically related groups,

called binning, is necessary because multiple species are present in
the data set. This can range from coarse-level groupings such as
domain (bacteria, archaea) down to fine-level groupings such as
individual strains of a given species, depending on the binning
method, community structure as well as sequencing quality
and depth.

To our knowledge, no metagenome-specific assemblers are yet
available; instead, methods developed for isolate genomes have
been used with parameter modifications, such as JAZZ1, Celera
Assembler2 and Phrap3. Owing to the nature of the samples and the
algorithms used, assembly can produce chimeric contigs and
scaffolds comprising reads from different organisms. Strain hetero-
geneity can add considerably to this problem as the probability of
co-assembly increases with closely related genomes4. Furthermore,
it is difficult to distinguish whether the chimerism is the result of
assembly or is natural, owing to homologous recombination1.

Accuracy of gene prediction methods, originally developed for
finding genes in isolate microbial genomes, is impaired by shorter
average sequence fragment length and a higher frequency of
sequencing errors, which leads to inevitable fragmentation of
genes. Additionally, the chimeric nature of assembled metagenomic
sequences enhances the problem. Methods for ab initio gene
prediction usually rely on identification of oligonucleotide compo-
sition and codon usage in the sequence fragments to predict coding
regions5,6. Depending on the phylogenetic heterogeneity of the
organisms in the environmental sample, however, the oligonucleo-
tide composition and codon usage preference of the different
contigs can be quite different. This makes it difficult for most
gene prediction algorithms to produce accurate models of protein-
coding regions. Evidence-based methods that rely on the similarity
of new sequences to genes in the database may also fail to identify
genes when there are no sequenced homologs, or when the
predicted genes contain chimeric or shuffled sequences. Owing
to these limitations, the quality of gene annotations is likely to
be reduced.

Binning methods fall into two main categories: sequence com-
position–based and sequence similarity–based. Composition-based
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classifiers distinguish genomes from one another by intrinsic
features of the sequence such as oligonucleotide frequencies
caused by codon usage or restriction-site frequencies7–9. Short
sequences are difficult to classify by this approach because of
insufficient signal9. Two composition-based classifiers have been
applied to metagenomic data sets, TETRA9 and PhyloPythia10.
Similarity-based methods assign metagenomic fragments to their
closest phylogenetic neighbor based on coding-sequence identity3.
This approach is entirely dependent on the availability of reference
sequences that are related to the species present in the microbial
community under study. Unfortunately, because of the cultivation
bias, the phylogenetic representation of naturally occurring
microbial species is very poor11, and similarity-based binning has
limited resolution.

A fundamental problem common to all methods applied to
metagenomic data sets is the inability to quantify error rates since
the ‘correct’ solution is not known. The rapid accumulation of
metagenomic data sets12 makes the need for benchmarking such
methods even more pressing. To address this need, we created three
data sets of varying complexity, and benchmarked several
commonly used assembly, gene prediction and binning methods
against them.

RESULTS
Simulated data sets
We constructed three simulated metagenomic data sets of varying
complexity by combining sequencing reads randomly selected from
113 isolate genomes sequenced at the Department of Energy Joint
Genome Institute (DOE-JGI) and available through the Integrated
Microbial Genomes (IMG) system13. This approach allows the
incorporation of real sequencing and sequence-dependent proces-
sing errors and does not rely on their simulation. We designed the
first data set (simLC) to simulate low-complexity communities
dominated by a single near-clonal population flanked by low-
abundance ones. These types of data sets result in a near-complete
draft assembly of the dominant population, as seen, for example, in
bioreactor communities3,14 (Supplementary Table 1 online).

We designed the second data set (simMC) to resemble moder-
ately complex communities with more than one dominant popula-
tion, also flanked by low-abundance ones, as has been observed in
an acid mine drainage biofilm1 and Olavius algarvensis symbionts15

(Supplementary Table 1). These types of communities usually

result in substantial assembly of the dominant populations
according to their clonality. The third data set (simHC) simulates
high-complexity communities lacking dominant populations, such
as agricultural soil16, where no dominant strain is present, and
typically results in minimal assembly.

Assembly
We assembled the simulated data sets using three commonly
used programs at the DOE-JGI; Phrap v3.57 (see URL in
Methods), Arachne v.2 (ref. 17) and JAZZ18 (Supplementary
Methods online).

First we investigated the degree of assembly (Table 1). Phrap
incorporated more reads and produced the largest number of
contigs in all three meta-assemblies. This trend is most obvious
in the case of the simHC data set, where Phrap assembled 40% of
the reads compared to only 2.4% and 2.3% by JAZZ and Arachne,
respectively. Only a small percentage of the reads assembled by
Phrap, however, were incorporated into major contigs (Z10 reads),
as expected for a community with no dominant populations. In
contrast, the assemblers had comparable performance for the
simLC data set, which most closely resembled an isolate genome.
As data-set complexity increased, JAZZ exhibited a considerable
drop in degree of assembly (Table 1).

We then assessed contig chimerism, caused by coassembly of
reads from two or more isolate genomes, by reference to the known
origin of individual reads (Fig. 1 and Supplementary Fig. 1
online). We assigned contigs to the phylogenetic group that
contributed the majority of constituent reads at each taxonomic
level from strain to domain, and defined the degree of contig
chimerism at each taxonomic level as the percentage of reads not
belonging to the major phylogenetic group.

Encouragingly, the majority of contigs comprised reads belonging
to a single isolate genome for all assembly methods (Fig. 1a,b).
Chimerism at progressively higher taxonomic ranks indicated that
Arachne produced the highest proportion of accurate contigs,
followed by JAZZ and Phrap (Fig. 1a,b). In absolute terms, Phrap
produced the highest number of homogeneous contigs (Table 1),
but the inability to distinguish these from chimeric contigs makes
the other assemblies, with lower chimeric fractions, more reliable.
We attribute the generation of chimeric contigs to the presence of
ubiquitous sequences (for example, transposases) and low-quality
sequencing mainly at the end of the reads (data not shown).

Table 1 | Assembly summary

simLC simMC simHC

Phrap Arachne JAZZ Phrap Arachne JAZZ Phrap Arachne JAZZ

Total reads 100,628 100,628 100,546 125,652 125,652 125,513 118,064 118,064 117,890

Contigs (41 reads) 10,320 1,400 1,953 12,644 4,692 5,840 19,236 558 1,066

Homogeneous contigs 9,055 1,333 1,941 11,026 4,329 5,282 16,451 477 1,012

Reads in contigs 56,843 33,065 29,390 82,693 55,022 39,808 47,338 2,744 2,832

Degree of assembly in contigs (%) 56.49 32.86 29.23 65.81 43.79 31.71 40.10 2.32 2.40

Major contigs (Z10 reads) 482 367 503 1,980 1,372 876 86 20 11

Homogeneous contigs 287 330 502 1,380 1,133 605 5 18 9

Reads in major contigs 30,852 28,060 24,405 50,267 39,190 1,9719 1,521 290 192

Degree of assembly in major contigs (%) 30.66 27.88 24.28 40.00 31.19 15.71 1.29 0.25 0.16

The total number of reads each data set comprised is reported in the first line. The number of contigs, homogeneous contigs, reads included in these and the degree of assembly for each assembly method used are
reported, both for all contigs and for contigs with at least 10 reads.

496 | VOL.4 NO.6 | JUNE 2007 | NATURE METHODS

ARTICLES
©

20
07

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

em
et

h
o

d
s



The percentage of chimeric contigs in the simLC assembly was
small, and the taxonomic level at which read homogeneity was
achieved varied (Fig. 1c). By contrast, most simMC chimeric
contigs were the result of coassembly of strains belonging to the
same species (Fig. 1c). We anticipated this as the simMC data set
comprised closely related dominant populations, and this high-
lights the fact that none of the assemblers could effectively
discriminate sequences belonging to strains of the same species
(Fig. 1a). Chimerism was distributed randomly at all taxonomic
levels among the simHC contigs, reflecting the absence of a large
number of sequences from the same organism. For all assembly
methods and all data sets, the degree of chimerism was most
pronounced in contigs shorter than 8 kb (Fig. 1b,c). Therefore,
employing these assemblers for highly complex community data
sets, such as simHC, has limited value since most contigs are below
8 kb and will provide misleading information.

Gene prediction
We applied the two gene prediction pipelines that have been
previously used for the DOE-JGI metagenomic projects, to each
of the assemblies resulting in 18 sets of identified genes. The first,
fgenesb (see URL in Methods), was used to predict coding
sequences both on the assembled contigs and the unassembled
reads. The second pipeline used a combination of CRITICA and
GLIMMER (CG), which is also used to predict genes in all the
isolate genomes sequenced at the DOE-JGI19.

To evaluate the accuracy of each pipeline, we compared the genes
identified on the simulated data sets to the genes originally
predicted on the corresponding reads of the isolate genomes
(reference genes) using blastp20, and categorized them into four
groups. The first comprised genes common to both data sets
(correctly identified genes). In this group we included only genes

identified on the same sequence reads, with
480% amino acid identity over 50% of the
shortest gene length. Genes falling below
these thresholds formed the second group
(inaccurately predicted genes). The third
group contained genes predicted in the
simulated data sets with no corresponding
reference gene (newly predicted genes).
Finally, reference genes without a corres-
ponding predicted gene in the simulated
data set formed the group of missed genes.
We expected reference genes represented by
o90 bp in the meta-assemblies to be missed
by blastp owing to their length and were
excluded from the comparisons. These com-
prised o7.5% of all identified genes in
simLC and simMC and o10% in simHC.

Fgenesb correctly identified 10–30%
more reference genes on the contigs than
the CG pipeline in every data set (Fig. 2a).
Both pipelines called 7–15% of the genes
inaccurately (Fig. 2a), hence the difference
in correctly called genes between the two
pipelines is due to CG missing a greater
proportion of reference genes, mainly
located on small contigs (data not shown).
Additionally, 1–10% of the genes were newly

predicted. The effect of assembly quality was striking in the gene-
prediction results. In all cases, the higher quality Arachne assem-
blies resulted in more accurate gene predictions (higher correctly
and lower inaccurately identified genes) than the other two
assemblers (Fig. 2a).

We also evaluated the accuracy of the gene calls on unassembled
reads (where low-abundance species are usually represented).
Fgenesb correctly identified B70% and missed B20% of reference
genes on unassembled reads in all data sets (Fig. 2b). The remaining
10% of reference genes were inaccurately called and another B8%
were newly predicted. Notably, the contribution of assembly to
accurate gene prediction was not more than 20%, whereas its effect
on the missed and the inaccurately predicted genes was only slightly
higher. The CG pipeline exhibited poor results (7% accurately
predicted, 85% missed and 8% inaccurately predicted genes), and
we did not use these data for the following steps of the analysis.

Although some of the inaccurate or new genes could be real (that
is, they were either miscalled or missed in the analysis of the
original isolate genomes), it is more likely they represent gene
prediction errors that can be attributed to the following factors. In
the case of fgenesb, the use of gene modeling parameters of one
‘generic’ microorganism cannot describe the diversity observed in
communities, especially in complex communities such as simHC.
Contig chimerism exacerbates this problem. For the CG pipeline,
the low percentage of accurately predicted genes could be explained
by CRITICA’s low sensitivity, which uses only sequence similarity
and di-codon frequencies as a measure of coding probability.
Therefore it would be strongly affected by the heterogeneity of
the metagenomic sequence fragments and the absence of similar
sequences in the database. Furthermore, both pipelines are affected
by the presence of low-quality sequences (especially in singlets and
contigs of low coverage) with errors (for example, frameshifts).
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Figure 1 | Quality of assembly. (a) Percentage of assembled sequence that contains assembly errors at any

phylogenetic level. Only contigs with at least 10 reads are included. (b) Degree of chimericity of contigs;

color corresponds to the assembler used. (c) Degree of chimericity of contigs produced by the three assem-

blers; color corresponds to the taxonomic level from which the contig is homogeneous. All contigs with at

least 2 reads are included in b and c. Larger versions of b and c are available in Supplementary Figure 1.
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Based on the simulated data sets, we predict that approximately
10–20% of genes called in metagenomic data sets (that have not
been manually curated) are inaccurate. This noise will contribute
to the contamination of sequence databases with ‘ghost’ genes
and may lead to the generation of inaccurate community
metabolic models.

Gene function prediction
Gene-centric or environmental gene tag (EGT) analysis is a recently
proposed method for comparing the metabolic potential of micro-
bial communities21,22. This approach is especially useful for highly
fragmented metagenomic data sets, and is dependent on the
accuracy of gene calling and annotation. To assess the effect of
annotation accuracy on gene-centric analyses, we compared the
annotations of the simulated data sets to those of the reference
genes (reference annotation). We also assessed the effect of

excluding singlet annotations from the EGT
profiles because they have been omitted in
previous studies1,3. We chose the widely
used Clusters of Orthologous Groups
(COG) classification23 as the basis for com-
parison. Functional prediction profiles for
each data set using fgenesb and the CG
pipeline were compared to each other
using hierarchical clustering (Fig. 3).

The distance between the reference and
fgenesb annotations reflects gene-calling
errors caused by the inaccurate gene models
and much shorter average sequence-
fragment length. We estimate that these
errors resulted in 5–20% of COGs having
misrepresented frequencies (both over- and
underrepresented; Fig. 3). We attribute the
small distances between the fgenesb annota-
tions for each data set to the fact that the
majority of genes are called on singlets with
a uniform error rate (Fig. 2b), resulting in
profiles essentially assembly independent.

Excluding singlet annotations produced
pronounced differences in EGT profiles compared to the profiles
based on genes predicted on contigs and singlets. In all cases the
latter were more similar to the reference set than to the genes
predicted by any of the methods on contigs alone (Fig. 3). We
attribute this to the fact that the majority of the genes are called on
singlets for all data sets (Fig. 2), which will likely be the case for most
real metagenomic data sets. Therefore, it is critical to include singlet
annotations in EGT calculations.

Binning
We binned assembled sequences using three different methods
previously used at the DOE-JGI. These include two sequence
composition–based methods (PhyloPythia10 and kmers), and
a sequence similarity–based approach (BLAST distr). kmers
and BLAST distr were developed at the DOE-JGI (Supplementary
Methods). All three methods assign contigs to phylogenetic
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Figure 3 | Hierarchical clustering of genes assigned to COGs in the simulated data sets. COGs are on the horizontal axis. Red and green color represent over- and

under-abundant functions in each data set, respectively.
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groups by comparison to third-party data (isolate genomes),
but the potential binning resolution differs. Specifically, BLAST
methods classified contigs only to the predefined rank of
Class, kmer to Family and PhyloPythia to varying ranks from
domain to genus. It has already been shown that the fidelity of
composition-based binning declines with decreasing fragment
length9,10, and chimerism will very likely reduce binning
fidelity. Indeed, binning of short sequences (o8 kb in simLC and
simMC, and the entire simHC) resulted in low-quality bins
(Supplementary Table 2 online), and thus we excluded them
from subsequent analysis.

For benchmarking binning accuracy, we determined the refer-
ence identity of each bin as the lowest taxonomic rank to which all
contigs belong. For example, if a bin comprised contigs assembled
from the genomes of Rhodopseudomonas palustris (a member of the
class Alphaproteobacteria), and Xylella fastidiosa (a member of the
class Gammaproteobacteria) its reference identity would be the
phylum proteobacteria because this is the lowest rank to which all
contigs belong. If one or more of the contigs in a bin were chimeric,
we used their phylogenetic identity, based on the majority read
composition, in the reference identity calculation.

We used PhyloPythia both in a sample-specific (ssp) and a generic
(gen) mode (Supplementary Methods), and in both cases it per-
formed better than the other two methods, as it typically exhibited
higher specificity values (Fig. 4 and Supplementary Table 2).
Training PhyloPythia on contigs belonging to individual dominant
community members provided higher resolution binning for those
organisms than runs based on the generic model (Supplementary
Table 2). However, it also resulted in slightly lower specificity values
because by attempting to bin contigs to its training rank of genus, it
included small amounts of sequence data from more distantly
related organisms.

In most cases, both BLAST distr and kmer performed poorly, as
evidenced by their low average specificity values and high s.d.
(Supplementary Table 2). BLAST distr is dependent on the
availability of closely related reference genomes, which are
frequently absent11. Even when a closely related genome is available,
the variation in genomic content between similar organisms may
result in the absence of corresponding genes in the reference
genome. Notably, kmer, although failing to assign bins to the
correct taxonomic group, did produce phylogenetically coherent
clusters at the rank of order and above.

To determine which combinations of tools best approximate
the true population structure, we calculated the relative abundance
of the two dominant populations in the binned data (that is,
Alpha and Gamma proteobacteria for both simLC and simMC)
and compared it to the original data set (Supplementary Fig. 2
online). Typically, dominant populations are overrepresented,
and their ratio is distorted in the final binned data sets. This
can be attributed to either insufficient assembly of minor
populations or the assignment of contigs to very broad bins (for
example, bacteria).

Notably, chimeric contigs did not have a noticeable effect on
binning accuracy. This was probably because small grossly chimeric
contigs had been excluded from the analysis and because
chimericity largely occurs at taxonomic levels below the binning
resolution of each method (Fig. 1c). Contigs belonging to a
given dominant population were assigned with variable accuracy
and taxonomic resolution, and distributed across multiple
bins, as shown by low sensitivity values (Supplementary
Table 2). We attribute this to intrinsic limitations of the binning
methods, as we observed it in many cases regardless of the
assembly and binning method used. Ideally, researchers would
like to see binning down to individual component populations.
But even with the best binning method used in the present study,
only a fraction of large contigs were accurately assigned down
to genus (B60% of contigs for the sample-specific model version
of PhyloPythia).

DISCUSSION
Even though a large amount of metagenomic data has already being
generated12 methods to process these data are in their infancy, and
objective measures of their efficacy are lacking. This study provides
for the first time such a quantitative measure, through the design of
simulated metagenomic data sets of varying complexity. We present
a critical evaluation of various assembly, gene prediction and
binning methods, previously used for analysis of metagenomic
data sets at the DOE-JGI, by benchmarking them against the
simulated data sets. Although this study does not test all methods
presently available to analyze such data, it highlights the utility of
the simulated data sets and illustrates some of the typical problems
of existing methods to guide future improvements.

Although all metagenomics processing steps will greatly benefit
from the availability of an adequate number of reference genomes
from all branches of the tree of life, this study additionally
demonstrates that there is considerable need for both the improve-
ment of existing methods and the development of new ones.
The iterative application of methods may also contribute to
an increase in the quality of the metagenomic analysis as down-
stream steps often provide information about the quality of the
previous ones.
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Figure 4 | Specificity and sensitivity values for selected binning methods.

Only contigs larger than 8 kb were used. Error bars indicate s.d. A complete

list of all the specificity and sensitivity values are available in

Supplementary Table 2.
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The simulated data sets and comparative analysis of the methods
presented here are available at the FAMeS webserver (see URL in
methods), which can also be used as a tool for the evaluation of new
methods. Selected data sets are also available in the IMG/M24

system, which facilitates their analysis and the identification of
errors. We anticipate that such simulated data sets will become a
standard metric for comparison and improvement of methods used
in metagenomic analysis.

METHODS
Additional methods. Descriptions of the data sets and the
methods used are available in Supplementary Methods.

URLs. Phrap: http://www.phrap.org; fgenesb: http://sun1.softberry.
com/berry.phtml?topic¼fgenesb&group¼programs&subgroup¼
gfindb; FAMeS: http://fames.jgi-psf.org.

Note: Supplementary information is available on the Nature Methods website.
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