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We describe a new computer system, called ARACHNE, for assembling genome sequence using paired-end
whole-genome shotgun reads. ARACHNE has several key features, including an efficient and sensitive procedure
for finding read overlaps, a procedure for scoring overlaps that achieves high accuracy by correcting errors
before assembly, read merger based on forward-reverse links, and detection of repeat contigs by forward-reverse
link inconsistency. To test ARACHNE, we created simulated reads providing ∼10-fold coverage of the genomes of
H. influenzae, S. cerevisiae, and D. melanogaster, as well as human chromosomes 21 and 22. The assemblies of these
simulated reads yielded nearly complete coverage of the respective genomes, with a small number of contigs
joined into a smaller number of supercontigs (or scaffolds). For example, analysis of the D. melanogaster genome
yielded ∼98% coverage with an N50 contig length of 324 kb and an N50 supercontig length of 5143 kb. The
assembly accuracy was high, although not perfect: small errors occurred at a frequency of roughly 1 per 1 Mb
(typically, deletion of ∼1 kb in size), with a very small number of other misassemblies. The assembly was rapid:
the Drosophila assembly required only 21 hours on a single 667 MHz processor and used 8.4 Gb of memory.

Shotgun sequencing was introduced by Sanger et al. (1977)
and has remained the mainstay of genome sequence assembly
for nearly 25 years. The method involves obtaining random
sequence reads from a genome (which may range from a small
plasmid to the complete chromosomal complement of an or-
ganism) and assembling them into contigs on the basis of
sequence overlap. The method was refined by Ansorge and
colleagues (Edwards et al. 1990), who introduced the notion
of obtaining paired-end reads by sequencing both ends of a
plasmid of known insert size (a technique sometimes referred
to as double-barreled shotgun sequencing). The forward and
reverse reads from a plasmid can be used to link together
distinct sequence contigs.

Shotgun sequencing is straightforward for simple ge-
nomes—those with no or few repeat sequences. For such ge-
nomes, one can largely assemble the genome simply by merg-
ing together reads containing overlapping sequence. Over the
years, shotgun sequencing has been applied to simple ge-
nomes of increasingly larger size, including plasmids, viruses
(Sanger et al. 1982), cosmids and bacterial artificial chromo-
somes carrying genomic DNA from humans or other organ-
isms, and bacterial genomes (Fleischmann et al. 1995).

Shotgun sequencing is more challenging for complex (re-
peat-rich) genomes, because false overlaps may occur owing
to the repeat sequences. Two primary approaches can be
taken to deal with complex genomes. The hierarchical shot-

gun approach involves generating an overlapping set of in-
termediate-sized clones [e.g., bacterial artificial chromosomes
(BACs) with 200-kb inserts], selecting a tiling path of these
clones, and then subjecting each of these clones to shotgun
sequencing; this approach thus decomposes a large genome
into smaller genomes. The whole-genome shotgun (WGS) ap-
proach involves generating sequence reads directly from a
whole-genome library and using computational techniques to
reassemble the genome sequence in one fell swoop. The WGS
approach avoids the laborious steps of generating and map-
ping a library of BAC clones, but poses a more challenging
computational assembly problem and a greater potential for
large-scale misassembly. The relative merit of the two ap-
proaches is likely to depend on the complexity of the genome
under study.

The hierarchical approach has been used for most eu-
karyotic genomes, including the yeast S. cerevisiae (Goffeau et
al. 1996), the nematode C. elegans (C. elegans Seq. Cons.
1998), the mustard weed A. thaliana (Arabidopsis Gen. Init.
2000), and the human (International Human Genome Se-
quencing Consortium 2001). The WGS approach was used for
the fruit fly Drosophila melanogaster (Adams et al. 2000) to
generate a draft assembly of the euchromatic portion of the
genome (∼3% repeat), although the hierarchical approach is
being used to produce a finished sequence. In this paper, we
describe a computer system for performing WGS assembly of
complex genomes.

Various assembly programs have been previously re-
ported, including SEQAID (Peltola et al. 1984), CAP (Huang
1992), PHRAP (Green 1994), TIGR assembler (Sutton et al.
1995), AMASS (Kim et al. 1999), CAP3 (Huang and Madan
1999), the Celera assembler (Myers et al. 2000; cf. Myers
1995), and EULER (Pevzner et al. 2001). However, only the
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Celera assembler has been designed and implemented for
large and complex eukaryotic genomes.

We present first an overview of the algorithm used for
assembly. A description of the generation of simulated data
for testing ARACHNE follows, as does a summary of the results
of applying ARACHNE to simulated WGS data from H. influen-
zae, S. cerevisiae, D. melanogaster, human chromosome 21, and
human chromosome 22. Technical details of the assembly
algorithm are then presented, followed by a general discus-
sion.

Outline of Assembly Algorithm

Input Data
ARACHNE is designed to analyze sequence reads obtained from
both ends of plasmid clones—that is, paired forward and re-
verse reads (although it can also be used with unpaired reads).
The mean and standard deviation of the insert length of each
plasmid clone can be specified individually. In practice, it is
most convenient to describe each clone as belonging to one of
several libraries characterized by these parameters.

Each base in each read has an associated quality score,
such as that produced by the PHRED computer program (Ew-
ing et al. 1998). A quality score of q corresponds to a prob-
ability of 10�q/10 that the base is incorrect; a quality score of
40 thus corresponds to 99.99% accuracy. As an initial step,
ARACHNE trims reads to eliminate terminal regions of ex-
tremely low quality and to eliminate reads containing very
little high-quality sequence (see the later section on technical
details, “Details of Assembly Algorithm”). The program also
trims known vector sequences and eliminates known con-
taminants (e.g., sequence from the bacterial host or cloning
vector).

Overlap Detection and Alignment: Sort and Extend
ARACHNE starts by detecting and aligning pairs of apparently
overlapping reads, referred to here simply as overlaps. Some of
these are false overlaps resulting from repeated sequences in
the genome and will be eliminated in subsequent steps.

Overlap detection is performed in an efficient manner.
Rather than comparing all pairs of reads (which requires N2/2
comparisons, where N is the number of reads), the program
uses a sort and extend strategy that scales approximately lin-
early. This strategy involves producing a sorted table of each
k-letter subword (k-mer) together with its source—that is, the
read in which it occurs and its position within the read (in
practice, we use k = 24). The table is sorted so that identical
k-mers appear consecutively (Batzoglou 2000).

The program then excludes k-mers that occur with ex-
tremely high frequency, which typically correspond to high-
copy, high-fidelity repeated sequences in the genome. We
eliminate them to increase the efficiency of the overlap de-
tection process rather than to eliminate repeated sequences,
which do not cause a problem per se.

The program then identifies all instances of read pairs
that share one or more overlapping k-mer (which can be
readily recognized from the sorted k-mer table), and uses a
three-step process to align the reads in an efficient manner.
The first step merges overlapping shared k-mers, the second
step extends the shared k-mers to alignments, and the third
step refines the alignments by dynamic programming (details
provided in the section below entitled “The Alignment Mod-
ule”). The overall process bears some resemblance to the
FASTA algorithm (Pearson and Lipman 1988).

This three-step process yields the most valid alignments
between read pairs. Some valid alignments may be missed if
the overlaps are short, of low quality, or consist solely of high-
copy, high-fidelity repeats. Some invalid alignments may re-
sult from low-copy repeats that produce apparently overlap-
ping sequence.

Error Correction
ARACHNE next detects and corrects sequencing errors by gen-
erating multiple alignments among overlapping reads. The
program then identifies instances in which a base is over-
whelmingly outvoted by bases aligned to it and corrects the
base (Fig. 1). In practice, this occurs where there is a disagree-
ment at an isolated position involving a single base (or occa-
sionally two bases); the process takes into account the quality
scores of the bases. Based on the cases examined, the majority
of these instances appear to be sequencing errors rather than
slightly different copies of a repeated sequence. In the latter
instance, this is due to the fact that there are typically mul-
tiple occurrences of each alternative sequence and, thus, there
is not an overwhelming vote for one alternative. ARACHNE
similarly corrects occasional insertions and deletions result-
ing from what appear to be sequencing errors. As the reads are
corrected, corresponding changes are made to the alignments.

Evaluation of Alignments
ARACHNE assigns a penalty score to each aligned pair of over-
lapping reads. The program first assigns a penalty score to
each discrepant base, based on the sequence quality score at
the base and flanking bases on either side. Discrepancies in
high-quality sequence are assigned a high penalty, whereas
discrepancies in low-quality sequence are penalized less
heavily. The penalty scores for the individual discrepancies
are then combined to yield an overall penalty score for the
alignment; overlaps incurring too high a penalty are dis-
carded (see The “Alignment Module” section for details). This
step is stringent, and false overlaps that remain are typically
caused by highly conserved repeats. At this point, ARACHNE
also detects and discards likely chimeric reads (see the section
below entitled “Detection of Chimeric Reads” for details).

Identification of Paired Pairs
ARACHNE searches for instances of two plasmids of similar
insert size with sequence overlaps occurring at both ends (Fig.
2A). Such instances are referred to as paired pairs. These in-
stances can be extended by iteratively building complexes of
such paired pairs (Fig. 2B).

Empirically, we find that these initial assemblies are al-
most always correct. The only significant exception occurs
when the paired pairs come from within a large repeat (larger

Figure 1 Correcting errors in reads. A portion of a multiple align-
ment between five reads is shown. In the highlighted column of the
alignment, a base T of quality 30 is aligned only to bases C, some of
which are of quality greater than 30. The base T is changed to a base
C of quality 0.
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than the insert size of the plasmid). The program attempts to
detect and eliminate such cases by virtue of their having too
high a depth of coverage (see below). Such instances are dis-
carded.

The collections of paired pairs (Fig. 2B) are merged to-
gether into contigs, and consensus sequences are formed (see
below). The resulting contigs are then treated as large reads. In
practice, their length varies from slightly more than the size
of a typical read to ∼30 kb.

Contig Assembly
In the absence of repeats, producing the correct layout of
reads is straightforward. Any two reads with substantial se-
quence overlap must truly overlap in the genome, and thus a
correct assembly could be obtained simply by merging all
overlapping reads. However, false overlaps may arise between
reads derived from different copies of a repeat. For example,
reads entering different copies of a repeat may have overlap-
ping sequence and could give rise to misassemblies (Fig. 3A).

ARACHNE identifies potential repeat boundaries and
avoids assembling contigs across such boundaries. The pro-
gram marks a potential repeat boundary whenever a read r can
be extended to the right (or left) by reads x and y, but x and y
do not overlap each other (Fig. 3B). Read r is not merged with
any read on its right, because it is not clear which read it
should be merged with. By contrast, when all neighbors to the
right of r overlap each other, then r can be safely merged with
its closest neighbor. As in Myers (1995), the program thus
merges, at this stage, read pairs that do not cross a marked
repeat boundary (Fig. 3C).

This criterion for merging pairs of reads is very conser-
vative, and based on the cases examined, it rarely produces
misassemblies. In fact, it is overly conservative because some
potential repeat boundaries reflect instances in which reads x
and y (Fig. 3D) fail to overlap owing to several sequencing
errors. ARACHNE employs a technique to eliminate some of
these spurious repeat boundaries (dropping dominated reads,

as described in the “Contig Assembly” section below) and
performs a second round of contig merger.

In addition to dominated reads, another category of
reads that introduces repeat boundaries that can be merged
across safely are reads fully included in other reads (the sub-
reads). During the above procedure of constructing contigs,
subreads are ignored. They are not used to detect repeat
boundaries and they are not included in any contig. After
creating the contigs, if read a is fully included in reads b1, . . .,
bk which all belong to contig C, then a is inserted in C. Details
are described in the “Contig Assembly” section.

Detection of Repeat Contigs
In the previous step, ARACHNE merges reads into contigs up to
potential repeat boundaries. Some of these are repeat con-
tigs—defined as contigs in which nearly identical sequence
from distinct regions are collapsed together. Such repeat con-
tigs can be identified in two ways. First, repeat contigs will
typically have an unusually high depth of coverage. This can
be assessed by using the log-odds ratio—that a contig of a
given length and density of reads represents unique sequence
versus being composed of reads derived from two copies of a
repeat (Myers et al. 2000). Second, they will typically have
conflicting links to other contigs. Repeat contigs are usually
linked to multiple, distinct, nonoverlapping contigs, reflect-
ing the multiple regions that flank the repeat in the genome
(Fig. 4).

Creation of Supercontigs
If the repeat contigs have been correctly marked, the remain-
ing contigs should represent correctly assembled sequence.
The unmarked contigs are referred to as unique contigs (simi-
lar to unitigs, (Myers et al. 2000)), because they usually repre-
sent unique sequence in the genome (or genomic repeated
sequence that has diverged sufficiently to allow it to assemble
as if it were unique).

ARACHNE then uses the forward-reverse links from plas-
mid reads to order and orient the unique contigs in longer
layouts called supercontigs (or scaffolds). Supercontigs are cre-
ated incrementally. At the beginning, each unique contig is
considered a supercontig. Pairs of supercontigs are then
merged into a large supercontig if they are joined by at least
two forward-reverse links (Fig. 5A). The program requires the
presence of at least two links to avoid links due to a single
chimeric plasmid. It is unlikely that there will be two inde-
pendent links supporting the same incorrect merger. Priority
is given to those mergers supported by the most links and
involving the shortest distances (see the “Supercontig Assem-
bly” section below for details).

Filling Gaps in Supercontigs
The layout now consists of a number of supercontigs, each of
which is an ordered list of contigs with interleaved gaps. Most
of these gaps correspond to regions marked as repeat contigs
and are thus omitted from the supercontig construction.
Some gaps will also correspond to regions in which there is an
insufficient number of shotgun reads to allow assembly.

ARACHNE attempts to fill gaps by using the repeat contigs.
For every pair of consecutive contigs with an interleaving gap
in a supercontig S, the program tries to find a path of pairwise
overlapping contigs that fill the gap. Forward-reverse links
from S guide the construction of the path by identifying con-

Figure 2 Using paired pairs of overlaps to merge reads. (A) A paired
pair of overlaps. The top two reads are end sequences from one insert,
and the bottom two reads are end sequences from another. The two
overlaps must not imply too large a discrepancy between the insert
lengths. (B) Initially, the top two pairs of reads are merged. Then the
third pair of reads (from the top) is merged in, based on having an
overlap with one of the top two left reads, an overlap with one of the
top two right reads, and consistent insert lengths. The bottom pair is
similarly merged.
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tigs likely to fall in the gap (Fig. 5B). Further details are given
in the section below entitled “Filling Gaps in Supercontigs”.

Consensus Derivation and Postconsensus Merger
The layout of overlapping reads is converted to a consensus
sequence with quality scores. This is done by converting pair-
wise alignments of reads (computed during the overlap detec-
tion phase) into multiple alignments. Because multiple se-
quence alignment is traditionally a time-consuming step, we
developed an efficient algorithm, described below under the
heading “Consensus Derivation”.

After forming consensus sequence, ARACHNE merges
overlapping adjacent contigs in supercontigs. In this final
stage, it accepts overlaps that have significant numbers of
discrepancies, thereby merging across spurious repeat bound-
aries that were not detected during layout.

Comparison with Other Assemblers
ARACHNE was developed from an earlier version of the pro-

gram described in a Ph.D. thesis (Batzoglou 2000). In broad
outline, the program follows the overlap-layout-consensus
approach that has been used by nearly all assemblers. Many of
the algorithmic aspects of ARACHNE are novel, while other
aspects are similar to existing assemblers.

Myers and colleagues produced a sophisticated assembly
program, called the Celera assembler (Myers et al. 2000),
based on various layout algorithms previously developed by
Myers (1995). ARACHNE shares some significant similarities
with the Celera assembler, most notably in the algorithms
for merging reads into contigs up to the boundaries of repeats
(Myers 1995). However, the two assemblers also have many
significant differences. The Celera assembler screens for pre-
defined repeats; ARACHNE does not and instead uses k-mer
frequencies to identify repeats. ARACHNE uses sorting of k-
mers to detect overlaps; the initial version of the Celera as-
sembler employed a different approach (although the pro-
gram has been subsequently revised (G. Myers, pers. comm.).
Like PHRAP (Green 1994) and CAP3 (Huang and Madan 1999),

Figure 3 Contig assembly. (A) How merging reads across the boundary of a repeat may result in a misassembly. Regions A, B, C, and D are unique
regions, and region R is a repeat occurring twice in the genome. Reads x and y overlap in region R. Thus, regions A and D are wrongly joined after
merging reads x and y. (B) A potential repeat boundary. Read r overlaps both reads x and y, but reads x and y do not overlap each other; they
disagree in their rightmost ends. Here, a repeat R starting inside reads x and y and including the full read r is shown. In practice, sequencing errors
rather than repeats often cause such patterns of overlap. (C) Contigs are created by merging reads up to the potential boundaries of repeats. A
potential repeat boundary is any place where a read may be extended with two nonoverlapping reads. Two regions of the genome covered with
reads are shown here. One region (A-R-D) is covered with solid line reads and the second region (C-R-B) with dotted line reads. The two regions
meet in the repeat R creating five contigs: these are the unique contigs corresponding to unique sequences A, B, C, and D, and the repeat contig
corresponding to the repeat R, where reads from both copies of R are overcollapsed into one contig. According to the algorithm used to construct
contigs, the contig corresponding to R would have exactly the reads that are fully included in the boundaries of R. All the other reads would be
assigned to contigs A, B, C, and D. (D) Sequencing errors. Read r dominates read y because the neighbors of y are all neighbors of r. This is caused
by a sequencing error on y, which is marked in the figure. Note that if y represented correct sequence, it would likely be extended to the right
by some read that did not overlap r, and thus r would not dominate y.
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ARACHNE creates, refines, and evaluates read alignments using
quality scores; the Celera assembler does not use quality
scores subsequent to trimming and prior to consensus.
ARACHNE uses error correction to more accurately evaluate
read overlaps. Both assemblers detect potential repeat bound-
aries, merge reads up to these boundaries (as in Myers 1995),
and use read density to detect repeat contigs. ARACHNE also
detects repeat contigs via conflicting links. Moreover, it uses
paired pairs and other techniques to produce longer contigs
during layout. Both ARACHNE and the Celera assembler re-

quire at least two links to order a pair of contigs in a super-
contig, but apart from that they use different algorithms to
build supercontigs and fill in gaps within supercontigs.

Simulation of WGS Data
We tested ARACHNE on simulated WGS data from known ge-
nomes. The data were generated in two steps: (1) selection of
random reads from the target genome and (2) assignment of
quality scores and introduction of errors. In the first step,
plasmids were randomly chosen from the genome by select-
ing a random location for the start of the insert and a random
length from a given length distribution. The corresponding
forward and reverse reads were then read from the genome. In
the second step, each simulated read was assigned realistic
quality scores and errors by pairing it with a real read taken
from a finished BAC sequencing project from the Whitehead/
MIT Center for Genome Research. For each read, the length,
quality scores, and correctness of each base in the read were
known (from comparison with the finished sequence). On
each simulated read, we imposed the pattern of quality scores
and errors seen in its corresponding read.

The simulated reads thus contain fairly realistic error pat-
terns. Nonetheless, they fall short of being completely realis-
tic in several respects (in decreasing order of significance).
First, because the plasmids are randomly positioned along the
genome, the simulation does not reflect potential cloning
bias. In other words, there is a nonuniform distribution of
clones across the genome. Second, because the simulated
reads are assigned quality scores by randomly pairing them
with actual reads, the simulation does not reflect regions of
systematically poor sequence quality. For example, sequence
following a long poly(A)-stretch may have poor quality,
whereas an ARACHNE simulation will pair each such simulated
read with an independent real read. Third, because our reads
are taken from published genomic sequences, we necessarily
omitted regions absent from the published sequence and con-
catenated sequences flanking small gaps. Consequently, re-
gions that were difficult to clone, sequence, or assemble in the
original published sequence will likely also be missing from
our results.

We generated full coverage and half coverage in the
simulations. Full coverage corresponds to ∼10.3-fold coverage
based on Whitehead’s definition of trimmed read length and
∼8.3-fold coverage based on the number of bases with a PHRED
quality score �20. Half coverage is half of this level. We gen-
erated data from small plasmids (mean insert size 4 kb) and
large plasmids (mean insert size 40 kb) in a ratio of 20:1 in the
case of full coverage, and 10:1 in the case of half coverage. In
each case, the insert sizes were normally distributed around
the mean with a standard deviation of 10%. Only 85% of the
reads were successfully paired, the other 15% being single
reads (reflecting a realistic sequence failure rate). Moreover,
0.7% of the inserts were chimeric—that is, corresponding for-
ward-reverse linked reads that come from unrelated, random
locations on the genome. (This rate was chosen to be higher
than the observed rate of chimeric inserts at Whitehead.)

RESULTS
We generated simulated WGS data from the published se-
quence of H. influenzae (Fleischmann et al. 1995), S. cerevisiae
(Goffeau et al. 1996), C. elegans (C. elegans Seq. Cons. 1998),
D. melanogaster (Adams et al. 2000), and from human chro-
mosomes 21 (Hattori et al. 2000) and 22 (Hunt et al. 1999).

Figure 5 Supercontig creation and gap filling. (A) A supercontig is
constructed by successively linking pairs of contigs that share at least
two forward-reverse links. Here, three contigs are joined into one
supercontig. (B) ARACHNE attempts to fill gaps by using paths of
contigs. The first gap in the supercontig shown here is filled with
one contig, and the second gap is filled by a path consisting of two
contigs.

Figure 4 Detection of repeat contigs. Contig R is linked to contigs
A and B to the right. The distances estimated between R and A and R
and B are such that A and B cannot be positioned without substantial
overlap between them. If there is no corresponding detected overlap
between A and B (if their reads do not overlap), then R is probably a
repeat linking to two unique regions to the right.
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With the exception of H. influenzae, in each case the
published sequence consisted of more than one contig, be-
cause of gaps in the published sequence and because the ge-
nome had multiple chromosomes. In these cases, we concat-
enated the contigs to obtain a single contiguous sequence
(which we refer to as the genome). This was done to simplify
the analysis of the assembly results.

We evaluated the assemblies by attempting to align the
entire length of each contig to the genome. If the contig could
be aligned along its entire length in more than one place, we
chose the best alignment. If the contig could not be aligned
along its entire length, we aligned as much as possible and
reported the outcome as a misassembly, as described below.
Each portion of a contig that could not be aligned to the

genome is reported. We also checked each link of
each supercontig to see if that link was consis-
tent with the positions of the contigs in their
alignments against the genome. If a link did not
align, we reported a misassembly. Most of the
misassemblies were readily classified into a few
types, as described in Figure 6A,B.

The assembly results are described in Tables
1–5. Table 1 reports contig coverage and read
usage. The contig coverage is 97%–98% at full
coverage and a slightly lower percentage for half
coverage. In all cases, at least 92% of the reads
were used. Because repeat contigs are occasion-
ally placed in more than one location, a given
read may sometimes be used more than once in
the assembly if it occurs in a long, perfect repeat
in the genome. At full coverage, the rate of mul-
tiple usage in H. influenzae is 1% (reflecting the
presence of eight exact repeats) and much lower
for the other genomes, which lack such long,
perfect repeats.

Tables 2 and 3 list size statistics for contigs
and supercontigs, respectively. The mean length
tends to underestimate the extent of the contigs,
because it is unduly influenced by a large num-
ber of short contigs that comprise only a small
percentage of the genome. The most useful sta-
tistic is likely the N50 length, which is the length
L such that 50% of the bases are in contigs of size
L or greater. The N50 contig length is ∼350 kb for
full coverage and ∼17 kb for half coverage. The
N50 supercontig length varies considerably
among the genomes. The cumulative probability
distributions of the contig and supercontig
lengths are shown in Figure 7A,B.

Table 4 lists base accuracy information. At
full coverage, the overall nucleotide accuracy is
somewhat better than 99.99% (quality score
>40). At half coverage, the overall nucleotide ac-
curacy is somewhat better than 99.9% and ∼95%
of the bases have quality scores corresponding to
accuracy exceeding 99.99%.

Table 5 reports assembly accuracy. With full
coverage there is roughly one misassembly per
Mb—mostly consisting of small deletions. With
half coverage there are slightly more errors, but
the assemblies are still quite useful for most pur-
poses. Most are minor misassemblies, as illus-
trated in Figure 6A. Exceptions are described in
the Table 5 footnote.

Table 6 describes ARACHNE’s computational performance
for the case of full coverage. The largest genome was Dro-
sophila, which used 8.4 Gb of memory and required 21 hours
on a single processor machine (667 MHz Compaq Alpha).

Details of Assembly Algorithm
In this section, we discuss some of the more technical aspects
of the assembly algorithm.

Initial Processing of Reads
ARACHNE trims each read, using its base quality scores, as fol-
lows. First it finds the longest contiguous sequence of bases in
the read such that the expected fraction of errors in the se-
quence is less than 5%. It trims further to ensure that no base

Figure 6 Types of misassemblies. (A) Three types of simple minor misassemblies are
shown: insertions, deletions, and hanging ends. In all three cases, a contiguous segment
(of a contig or the genome) of length less than 10 kb does not align in the expected
location (with the genome or contig). This segment could be aligned at some alternate
location in most cases, although we do not do this in practice. Compound minor
misassemblies (e.g., contigs having two insertions) are reported as multiple misassembly
events. (B) Two types of major misassemblies are shown. In the first type, two pieces of
a contig align to distant parts of the genome (if one piece is very short, we instead report
a hanging end, as in A). In the second type, adjacent contigs in a supercontig are aligned
to distant parts of the genome. In practice, what we typically encounter is a hybrid
between these two types: a contig that lies in the middle of a supercontig is split as in
the first type. We call this hybrid the standard major misassembly.
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of quality less than 10 is within 12 bases of either end. If after
trimming, less than 50 bases remain, the read is discarded.

After trimming, the program uses the alignment module
to align the reads with the E. coli host genome, E. coli trans-
posons, the cloning vector and, where appropriate, mito-
chondrial sequence of the organism under study. Depending
on the circumstances, when we find such an alignment we
remove the beginning of the read, the end of the read, or the
entire read. ARACHNE does not screen reads for matches with
repeat sequence.

The Alignment Module
ARACHNE has an alignment module that is used to align reads
to reads, reads to contaminants, contigs to each other, and
several other purposes. The alignment module accepts as in-
put a collection of DNA sequences of arbitrary lengths, and it
produces as output pairwise alignments between them. It pro-
ceeds in four phases: sorting of k-mers, coalescence of k-mer
hits, alignment generation, and alignment refinement. These
phases are designed so that a single k-mer hit (perfect match
of length k between two of the sequences) can lead to an
alignment between them, and so that k-mer hits that do not
lead to alignments can be rapidly processed.

In phase 1 of this process (sorting), a list is made of all the
length k sequences (k-mers) that appear in the sequences and

their reverse complements; where k is an adjustable param-
eter, varying from 8 to 24, depending on the characteristics of
the sequences.

To reduce memory usage, phase 1 is usually performed in
100 passes, with each pass processing a subset of the k-mers.
Specifically, there are 10 outer passes, in which the first and
last bases of the k-mer are varied symmetrically (e.g., one
outer pass handles k-mers of the form A. . .G or its reverse
complement C. . .T) and 10 inner passes, in which the second
and second-to-last bases are varied in the same way. In each
pass, we scan the input sequences to find all instances of the
relevant k-mers and, for each, create a record having four
entries: the k-mer, the sequence number, the position of the
k-mer in the sequence, and a reverse complementation flag.
The role of the latter flag is as follows. For each relevant k-mer
in the sequences, we list either the k-mer or its reverse comple-
ment depending on which is lexicographically first (with the
choice indicated by the flag). In this way, we avoid separate
processing of the reverse complements of the given se-
quences.

The records for each pass are placed in a vector. For each
pass of phase 1, a pass of phase 2 is performed. Phase 2 begins
by sorting the members of this vector by their first entries,
thereby grouping together records having the same k-mer. If
we find that the number of records in the vector having the

Table 2. Characterization of Contigs

Genome H. influenzae S. cerevisiae D. melanogaster Human 21 Human 22

Full Coverage (∼10-fold)
Number of contigs 12 88 678 187 230
Mean length (kb) 150 132 174 178 142
N50 length (kb) 413 258 324 387 353

Half Coverage (∼5-fold)
Number of contigs 142 865 8774 2807 2917
Mean length (kb) 13 13 13 11 11
N50 length (kb) 18 18 19 17 15

The N50 length is the length L such that 50% of the bases are contained in contigs of size at least L.

Table 1. Contig Coverage and Read Usage

Genome H. influenzae S. cerevisiae D. melanogaster Human 21 Human 22

Length (Mb) 1.8 12 120 33.8 33.5
Full Coverage (∼10-fold)

Genome contained in sequence
contigs (%) 98.8 96.1 97.9 98.2 97.4

Bases in undetected overlaps (%) 0.02 0.1 0.95 0.6 0.4
Reads appearing in assembly (%) 98.7 95.1 97.3 96.7 95.3
Reads appearing in multiple

locations in assembly, owing
to exact repeats (%) 1.0 0.2 0.2 0.03 0.06

Half Coverage (∼5-fold)
Genome contained in sequence

contigs (%) 97.1 92.4 95.4 95.0 92
Bases in undetected overlaps (%) 0.9 0.2 0.2 0.3 0.5
Reads appearing in assembly (%) 97.9 92.9 95.9 95.4 92.1
Reads appearing in multiple

locations in assembly, owing
to exact repeats (%) 1.7 0.04 0.1 0.02 0.04

For ten assemblies (of five genomes at two levels of coverage), the genomic coverage by contigs and read utilization
is given. Bases in undetected overlaps give the fraction of the genome covered multiply by contigs.
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same k-mer as their first entry exceeds a specified (adjustable)
threshold, we do not process them. Otherwise, for each two
records sharing the same k-mer entry, we consider the perfect
k-long partial alignment (or k-mer hit) that it defines.

Phase 2 then proceeds by exploiting the inherent redun-
dancy of the data, coalescing the k-mer hits into longer, im-
perfect, but gap-free partial alignments, as illustrated in Figure
8. These partial alignments are further restricted to have the
following properties: no mismatches on either end; any two
mismatches are separated by at least two matching bases; and,
subject to these restrictions, no extension of the partial align-
ment is possible. We call these partial alignments extended
k-mer hits.

The alignment module maintains a list of extended k-
mer hits, which grows as the passes are processed. For each
k-mer hit, phase 2 first checks this list to see if a preexisting
extended k-mer hit extends it. This is a rapid operation, be-
cause it can be accomplished by checking indices (and without
accessing the sequences). If no such extended k-mer hit exists,
then the given k-mer hit is extended and appended to the list.

In phase 3, full alignments are created from the extended
k-mer hits. For each pair of sequences we form a directed
graph, whose vertices are the extended k-mer hits associated
to that sequence pair and whose edges correspond to pairs of
extended k-mer hits that can likely be combined into a single,
good, partial alignment. Then, for each maximal path in this
graph, we attempt to construct an alignment. This is done by

filling in bases between consecutive extended k-mer hits in
the path and extending on both ends to create a full align-
ment. Several heuristic parameters control this process, which
yields, at most, one alignment from each path. Many paths do
not yield a full alignment.

In phase 4, each full alignment is refined via dynamic
programming (Needleman and Wunsch 1970), under the as-
sumption that the new alignment is close to the old one (us-
ing the standard “banded diagonal” approach to improve
running time). Once the alignments have been created, they
are scored. For each mismatch, we first assess the quality of
the aligning bases, assigning a single number, which is ap-
proximately the minimum of the quality scores assigned to
the two bases, the two bases on their left, and the two bases on
their right. Then we assign a penalty score to the mismatch.
For example, if we found that the minimum of all six scores
was 30, we would assign the penalty score of 1000 (= 1030/10).
Penalty scores for insertions and deletions are computed simi-
larly, and the penalty scores for all the discrepancies appear-
ing in the alignment are summed and then normalized by
dividing by (overlap length/100)1.5. Alignments whose pen-
alty score exceeds 100 are usually discarded.

Detection of Chimeric Reads
Reads that contain genomic sequence from two disparate lo-
cations are termed chimeric. We identify them according to

Table 3. Characterization of Supercontigs

Genome H. influenzae S. cerevisiae D. melanogaster Human 21 Human 22

Full Coverage (∼10-fold)
# of supercontigs 3 19 65 38 71
Mean length (kb) 603 6511 1811 877 461
N50 length (kb) 1192 1177 5143 3986 3011

Half Coverage (∼5-fold)
# of supercontigs 10 51 450 168 206
Mean length (kb) 178 219 254 192 150
N50 length (kb) 629 1732 4258 3278 3197

The lengths include only the known bases actually contained in the assembly and thus exclude the length contained
in the gaps (which typically comprise an additional 3–5%). The N50 length is the length L such that 50% of the bases
are contained in supercontigs of size at least L.

Table 4. Base Pair Accuracy

Genome H. influenzae S. cerevisiae D. melanogaster Human 21 Human 22

Full Coverage (∼10-fold)
Average quality 45.3 43.6 43.4 42.8 41.3
Fraction of bases assigned quality 40 99.6% 99.6% 99.6% 99.6% 99.5%
Average quality of bases reported to

have quality score 40 (all correct) 49.5 51.5 51.3 47.6
Half Coverage (∼5-fold)

Average quality 32.3 32.6 33 32.3 32.1
Fraction of bases assigned quality 40 95.1% 95.0% 95.2% 95.2% 95.1%
Average quality of bases reported to

have quality score 40 44.0 42.6 48.2 44.2 43.6

The average quality is defined as: �10 log10 [(# of mismatches, insertions, and deletions)/(# of bases in contigs)].
Thus, bases of quality 30 are 99.9% accurate, bases of quality 40 are 99.99% accurate, and so on. ARACHNE assigns
a maximum quality score of 40. The table reports the average quality for the assembly (obtained by comparison with
the known genome sequence), the percentage of bases assigned the maximal score, and the actual quality of the
bases assigned the maximal score.
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heuristic criteria, which empirically appear to flag all chimeric
reads, but also flag a small number of nonchimeric reads.
Reads flagged as chimeric are discarded.

Two reads have a good overlap if they overlap with pen-
alty score �100. Two reads, for example, a and c, have a
transitive good overlap if there exists a read b such that a
and b have a good overlap, b and c have a good overlap,
and there is an implied overlap of at least 50 bases between a
and c.

For a read c to be declared (potentially) chimeric, it must
branch, in the sense that it has a transitive good overlap with
some read z, yet no good overlap between c and z can be
found. To be certain, we align c with z from scratch. Moreover,
to declare c chimeric, there must also be evidence that some
position x in c can be called the point of chimerism: we must see
reads that align with c from the left, up to x, and perhaps slightly
beyond, and reads that align with c from the right, back to x, and
perhaps slightly before, but no read n that aligns with c, covering
bases well to the left and right of x (Fig. 9).

At the same time that we detect chimeric reads, we also
detect and discard dead-end reads: reads a for which no
known read overlaps a and extends beyond its left (or right)
end, yet for which some read c has a good transitive overlap
with a and extends significantly beyond this end. Reads may
have dead-ends because they are of low quality at one of their
ends, or because they are chimeras, formed by concatenating
disjoint genomic segments, one long and one very short. Chi-
meras of this type are not always detected by the previous test
for chimerism, because overlaps with the short segment may
be missed.

Contig Assembly
During contig assembly, reads are merged into contigs up to
potential repeat boundaries. Reads that are fully included in
other reads (the subreads) are excluded from this procedure.
The rest of the reads (the full reads) are merged whenever they
overlap, except for the following restriction. Suppose read b is
the read that extends read a to the right by the least positive
amount (denoted by a → b). Suppose there is a read c that
overlaps with a by at least 100 bases, and extends a to the
right. Suppose b and c do not overlap. Moreover, suppose
there is no path of reads x1,. . ., xk such that (b,x1), (x1,x2), . . .,
(xk,c) are all overlaps and the implied shift between b and c is
consistent with the overlaps (a,b) and (a,c) (Fig. 10). Then,
merging of reads stops to the right of read a. In other words,
the contig where a belongs does not contain any read that
extends a to the right.

Missed overlaps between pairs of reads lead to detected
repeat boundaries according to the above criterion. The fol-
lowing heuristic is used in order to recover some of the missed
overlaps: Let a → b, and c → d. Suppose there are overlaps (a,c)
and (b,d), but no overlap (b,c). Then the overlap (b,c) is in-
serted (we refer to this rule as Rule 1).

A first round of merging reads is performed, with the
restriction of not merging any reads across detected repeat
boundaries. A second round of merging is performed after
repeat boundaries are recomputed under a more stringent
definition of what is a repeat boundary. Specifically, only
maximal reads are used to detect repeat boundaries in this
second round. A read is maximal if no other read dominates
it. Read a dominates read b if a and b overlap, and the set of

Figure 7 Coverage in assemblies of 10-fold simulated reads. (A) Coverage of the genome with contigs. Contigs of sizes >250 kb cover 50%–70%
of the genome. (B) Coverage of the genome with supercontigs. Supercontigs of size >1 Mb cover at least 65% of the genome in all test examples.
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reads extending a both to the left and the right is a strict
superset of the set of reads extending b, and all the extension
lengths and directions are consistent (e.g., Fig. 3D). For ex-
ample, if b extends a to the right by 100, a is the only neigh-
bor of b to the left, c is the only neighbor of b to the right and
extends b by 50, c extends a to the right by 150 (or, more
precisely, within 4% of 150), and d also extends a to the right,
then a dominates b.

After the creation of contigs as described above, the sub-
reads (excluded so far from consideration) are inserted into
contigs, whenever this can be done unambiguously. Specifi-
cally, if read a is fully included in reads b1, . . ., bk, which all
belong to contig C, then a is inserted in C. This insertion takes
place if the positions of a in C as implied by its overlaps to b1,
. . ., bk are all similar within three bases.

Detecting Repeat (Super)contigs
We mark repeated contigs using two heuristic methods,
namely density of reads and consistency of forward-reverse
links. The second of these methods is also used to mark su-
percontigs as repeated during supercontig assembly.

Density of Reads
We compute the log-odds ratio, that a contig with a given
density of reads represents a unique region of the genome
versus representing at least two copies of a repeated region
(Myers et al. 2000). We use a cutoff of 1 for this ratio (log

base-2), so that any contigs with a log-odds ratio less than 1
are marked as repeated.

Consistency of Forward-Reverse Links
Contig A is linked with contig B if there are at least two for-
ward-reverse links between reads in A and B. Each forward-
reverse link gives an estimated distance between A and B (Fig.
11), which is positive in the case of a gap and negative in the
case of an overlap. The mean and standard deviation of the
distance between A and B, denoted respectively d(A,B) and
ERR(A,B), can be computed from the estimated insert length
and standard deviation of each forward-reverse link.

Table 5. Misassemblies

Genome H. influenzae S. cerevisiae D. melanogaster Human 21 Human 22

Full Coverage (∼10-fold)
Deletions 2 5 102 13 26
Mean length (bp) 440 470 1660 360 430
Insertions — 1 7 — 2
Mean length (bp) — 350 990 — 400
Hanging ends — — 3 — 4
Mean length (bp) — — 190 — 800
Other — — 3 1 —
Misassemblies — — (notea) (noteb) —

Half Coverage (∼5-fold)
Deletions 3 4 116 26 41
Mean length (bp) 290 3790 1600 220 340
Insertions 2 — 12 2 3
Mean length (bp) 380 — 670 90 390
Hanging ends 1 2 42 11 14
Mean length (bp) 78 450 460 1330 826
Other — — 5 4 5
misassemblies — — (notec) (noted) (notee)

See Figure 6A,B for an illustration of the various types of common misassemblies. Other misassemblies are as follows:
aTwo contigs of lengths 1 kb and 138 kb were exchanged in a supercontig. Two correct contigs of lengths 313 kb
and 169 kb, which were separated in the genome by 60 bp, were glued along a 440-bp segment that appeared at
the left end of the left contig, and also at the right end of the right contig, yielding a chimeric contig in the final
assembly (which we call a slipped join). There was a standard misassembly (Fig. 6B), occurring in a 4.8-Mb super-
contig.
bAt the end of a supercontig, there was a contig of length 10 kb, which aligned at a distant location in the genome
relative to the rest of the supercontig.
cA supercontig of 467 kb had a standard major misassembly. A supercontig of 1.4 Mb had two stray contigs of 5 kb
and 2 kb. A contig had a deletion of 29 kb. Contigs of 27 kb and 37 kb were misassembled.
dA 3.4-Mb supercontig had a standard major misassembly. Contigs of 9 kb and 24 kb had slipped joins. A 12-kb
contig at the end of a 2.6-Mb supercontig was misassembled.
eA 4.5-Mb supercontig had a standard major misassembly. A 14-kb contig had a slipped join. A 303-kb supercontig
was slightly misassembled near one of its ends. A supercontig had a spurious contig of length 5 kb. A 9-kb supercontig
consisted of two incorrectly linked contigs.

Table 6. Computational Performance
at Ten-Fold Coverage

Genome
Length
(Mb) Time (Hr)

Memory
(Gb RAM)

H. influenzae 1.8 0.3 0.13
S. cerevisiae 12 1.9 1.0
D. melanogaster 120 21 8.4
Human 21 33.8 7.5 3.0
Human 22 33.5 8.7 4.9

Total CPU times are given, including times for both assembly and
evaluation, using a single 667 MHz Alpha processor on a Compaq
ES40 machine.
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Rule 1. If d(A,B) < �2000 � 4 ERR(A,B) then (super)con-
tigs A and B are marked as repeated. Intuitively, if from the
forward-reverse links connecting them, A and B are estimated to
overlap by too much, then they are both marked as repeated
(and are not subsequently merged with any supercontig).

Rule 2. Similarly, if contig A is linked to contigs B and
C, then from d(A,B) and d(B,C) and the lengths of B and C we
can compute the estimated gap or overlap length between B
and C, denoted d(B,C). We can also compute the standard
deviation of d(B,C), denoted ERR(B,C). If d(B,C) < �2000 � 4
ERR(B,C), then we mark contig A as repeated.

The above rules are generalized to apply to supercontigs,
so that as supercontigs grow some of them are marked re-
peated and are not further extended.

Supercontig Assembly
Supercontigs are built incrementally. Initially, every contig is
a supercontig, and every subsequent round of merging con-
sists of selecting two supercontigs and merging them, until no
more merges can be performed. Specifically, a priority queue
(Q) is created, which holds all pairs of supercontigs that could
be merged. Each pair of supercontigs has a score that signifies
the priority of merging that pair. For two supercontigs, S1, S2,
with k � 2 forward-reverse links between them, and estimated
distance d(S1,S2), the priority score of merging them is
s(S1,S2) = f(k) �| d(S1,S2)|. Intuitively, the first term, f(k), re-
wards the number of links between S1 and S2, so that super-
contigs with more links are merged with higher priority. (In
our implementation, f(2), f(3), f(4), . . . = 50, 875, 1700, 2025,

2350, 2475, 2600, 2625, 2650, 2675. These numbers were de-
rived empirically; however, any scoring scheme that balances
between f(k) and |d(S1,S2) | should work. The second term
penalizes merging S1 and S2 if doing so would introduce either
too much of an overlap or too long a gap.

Initially, Q contains all pairs of contigs that are not
marked as repeated and are linked by �2 forward-reverse links.

During each round of merging, the following steps are
performed:

1. Extract from Q the pair of supercontigs, S1, S2, with the
highest priority score.

2. Merge S1, S2, creating supercontig T.
3. Remove all pairs in Q where one of the two supercontigs is

either S1 or S2.
4. Find all supercontigs W that share forward-reverse links to

T, and insert (T,W) into Q.
5. Apply Rules 1 and 2 for marking repetitive supercontigs, to

mark T or any supercontig W linked to T. For any supercon-
tig marked as repetitive, remove all pairs in Q containing it.

The above procedure is first run using only short forward-
reverse links (links <10,000 long). It is run again using all the
links. In effect, only plasmid links are used in the first round
whereas plasmid, cosmid, and BAC links are used in the sec-
ond round.

Filling Gaps in Supercontigs
Gaps between two consecutive contigs in supercontigs are
filled according to the following algorithm: Graph G = (V,E) is
defined, where the set of vertices V is the set of contigs, and an
edge connects two contigs if they are known to overlap. A pair
of contigs A, B is said to be connected by a path p in G if there
are edges (A,X1), . . ., (Xk,B) in E. This path has an associated
distance, dp(A,B), corresponding to the length of sequence be-
tween A and B in the path (Fig. 12A).

We first compute, for every pair of contigs A,B in V, the
shortest path p in G that connects the contigs (shortest in
terms of the distance dp(A,B)). In order to perform this step
efficiently, we restrict the computation to finding the shortest
path p for which dp(A,B) � 2000. We store the results in a new
graph, GPATHS(V,EPATHS), where edges in EPATHS correspond to
the computed shortest paths. Assuming that on average a
contig has a path of sequence distance � 2000 to a constant
number of other contigs, this computation takes time linear
in the size of V. In practice, we did not experience bottlenecks
in this step.

Then, for every pair of contigs A,B that are consecutive in
a supercontig S we attempt to fill the gap between A and B as

follows:

1. If (A,B) is in EPATHS, that is, a path has already
been computed for A,B, then simply fill the
gap with the contigs in the path.

2. Otherwise, first find every contig T that
shares forward-reverse links with W, and such
that from these links T is positioned between
A and B in W (Fig. 12B). The set of all such
contigs is called the set of targets, VT.

3. Using breadth-first search, look in GPATHS for
a path from A to B that uses only nodes in VT.
If a path is found in GPATHS from A to B, this
corresponds to a path p in G from A to B. Use
the ordered contigs in p to fill the gap be-
tween A and B.

Figure 8 Partial alignments in the alignment module. Three partial
alignments of length k = 6 between a pair of reads coalesce to yield a
single full alignment of length k = 19. Vertical bars denote matching
bases, whereas x’s denote mismatches. This illustrates the commonly
occurring situation where an extended k-mer hit is a full alignment
between two reads (k = 6 is used in the figure for simplicity).

Figure 9 Detection of chimeric reads. Reads l1, l2, l3, r1, r2, and r3, and the absence of
a read n (having long overlaps on both sides of a point x) suggest that read c may be
chimeric, consisting of the juxtaposition of two disparate genomic segments: one cor-
responding to the part of c before x, and one corresponding to the part of c after x. We
call x the point of chimerism of c. Note that reads l3 and r3 extend slightly beyond x, as
often happens for real chimeric reads.
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Consensus Derivation
Once reads have been laid out, we create consensus sequence
efficiently by converting pairwise read alignments (computed
during the overlap detection phase; see the section above en-
titled “Overlap Detection and Alignment: Sort and Extend”)
into multiple-read alignments. This process begins with a list
of oriented reads (for a given contig), approximate place-
ments for them measured from the beginning of the contig,
and all the preexisting pairwise alignments between the reads.

From the pairwise alignments, we select those that are
consistent with the placements and with each other. If the
placements imply the existence of alignments that we don’t
already have (which might, for example, correspond to align-
ments not extending a perfect 24-long match), then we at-
tempt to recover them.

We then find an initial read that (according to the con-
sistent alignments) has no bases to its left. This is usually the
leftmost read of the contig. Starting at the left end of the
initial read (which we will call the current read), we move
base-by-base to the right. At each base, we use the consistent
alignments to determine which bases are aligned with it in a
multiple alignment. A quality-weighted vote determines the
base placed in the consensus and the score assigned to it,
which we cap at 40. As we move to the right, at each base, we
also reconsider the choice of current read. Switching is nec-
essary at the right end of a read, but also to correctly handle
indels and low-quality regions. This process continues until
(according to the consistent alignments) there are no bases to
the right. Normally, all reads in the contig have been used,
yielding a single consensus sequence for the contig.

DISCUSSION
ARACHNE is a whole-genome shotgun assembler designed to
exploit sequence data from paired-end reads. The program
has been tested on simulated data generated by decomposing

genomic sequence from bacterial, yeast, fly, and human chro-
mosomes. The assemblies produced are very good, although
not perfect. The vast majority of these genomes are covered in
large contigs and supercontigs, with less than one misassembly
per megabase and excellent sequence accuracy. The algorithm is
also reasonably efficient, being subquadratic in time and linear
in space, allowing for efficient scaling to larger genomes.

These results provide confidence that ARACHNE can be
used for the assembly of genomes of intermediate size (a few
hundred megabases)—such as flies, worms, tunicates, and
pufferfish. Indeed, we have used ARACHNE in a project to se-
quence the 40-Mb genome of the fungus Neurospora crassa (B.
Birren et al., in prep.). The assembly can be viewed at www.
genome.wi.mit.edu/annotation/fungi/neurospora. In an ex-
perimental assembly using a portion of the Neurospora reads
provided ∼10X coverage of the genome, we obtained contigs
with an N50 size of 52 kb which covered ∼99% of the genome.
The contigs were assembled into 323 supercontigs with an
N50 size of 256 kb. The accuracy of the assembly was checked
by comparing it to 4 Mb of independently generated finished
sequence. There were only two discrepancies (one involved
exchanging the order of two short contigs within a supercon-
tig; the other involved the incorrect addition of a single se-
quence read to the end of a contig). ARACHNE reported quality
scores of at least 40 (that is, 99.99% accuracy) for 98% of the
sequence in the assembly; comparison with finished sequence
showed that this sequence was 99.996% accurate. We also
used ARACHNE to generate initial assemblies of the genomes of
Tetraodon nigroviridans (400 Mb) and Ciona savignyi (180 Mb)
(manuscripts in preparation).

We are optimistic that ARACHNE can be used to produce
reasonable initial WGS assemblies of large, complex mamma-
lian genomes, such as the human, mouse, and rat. Such initial
WGS assemblies are likely to be useful for many applications

Figure 10 Contig assembly. If (a,b) and (a,c) overlap, then (b,c) are
expected to overlap. Moreover, one can calculate that
shift(b,c) ≈ shift(a,c) � shift(a,b). We detect a repeat boundary to-
ward the right of read a, if there is no overlap (b,c), nor any path of
reads x1, . . ., xk such that (b,x1), (x1,x2), . . ., (xk,c) are all overlaps, and
shift(b,x1) + . . . + shift(xk,c) ≈ shift(a,c) � shift(a,b).

Figure 11 Consistency of forward-reverse links. (A) The distance
d(A,B) (length of gap or negated length of overlap) between two
linked contigs A and B can be estimated using the forward-reverse
linked reads between them. (B) The distance d(B,C) between two
contigs B,C that are linked to the same contig A, can be estimated
from their respective distances to the linked contig.
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(although producing high-quality finished sequence of such
genomes will require at least some clone-based sequencing).

The tests above show that it is possible to produce rea-
sonable WGS assemblies of human chromosomes 21 and 22.
These results are encouraging, although they are based on
simulated data that ignore the crucial issue of cloning bias,
which may result in underrepresentation of some sequences.
Recently, we used ARACHNE (with appropriate memory opti-
mization) to produce an initial WGS assembly from 4X
coverage of the mouse genome (available at http://
mouse.ensemble.org). The analysis required 8 days on a single
Compaq Alpha processor running at 833 MHz and used less
than 24-Gb RAM. This demonstrates the feasibility of the pro-
gram for mammalian-sized genomes.

The current version of ARACHNE (version 1.0) is freely
available as both source code and executable for Compaq Al-
pha machines (www.genome.wi.mit.edu). We are continuing
to further develop the program to improve its accuracy and its
performance.
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Figure 12 Filling gaps in supercontigs. (A) Contigs A and B are
connected by a path p of contigs X1, . . ., Xk. The distance dp(A,B)
between A and B (along the path p) is the length of the sequence in
the path that does not overlap A or B. (B) Contigs Y1 and Y2 share
forward-reverse links with the supercontig S. These links position
them in the vicinity of the gap between A and B. Therefore, Y1 and Y2
will be used as possible stepping points in the path closing the gap
from A to B.
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