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The prevailing method of determining
the sequence of a long DNA segment
is the shotgun sequencing approach, in
which a random sampling of short

fragment sequences is acquired and then assem-
bled by a computer program to infer the sampled
segment’s sequence. In the early 1980s, such seg-
ments were typically on the order of 5,000 to
10,000 base pairs (5 to 10 kbp). By 1990, this
method was sequencing segments on the order
of 40 kbp, and by 1995, the entire 1,800-kbp H.
Influenzae bacterium had been sequenced.1 The
source segment is clearly becoming extremely
large without any concomitant increase in the
length of the sampled fragment sequences. Soon,
shotgun data sets could well consist of millions
of sampled fragment sequences and will require
significant computational resources to assemble.

The whole-genome shotgun sequencing of H.
Influenzae in 1995 showed that direct shotgun se-
quencing could handle a much larger source se-
quence segment than biologists had commonly
thought. Before that, cosmid-sized clones of 30
to 50 kbps were considered this approach’s up-

per limit. (A cosmid is a type of vector for manip-
ulating and replicating inserted pieces of DNA.)
Now, the shotgun sequencing of 200 kbp bacter-
ial artificial chromosomes (BACs) is a given. This
achievement inspired Jim Weber and me to pro-
pose the use of a shotgun approach to sequence
the human genome,2 after which we requested
funding for a pilot project from the US National
Institutes of Health. The established community
rejected our controversial proposal,3 but in May
of 1998, Craig Venter and the Perkin-Elmer
Corporation announced a new private venture,
Celera Genomics, aimed at using a whole-
genome shotgun approach to sequence the fruit
fly Drosophila (≈120 Mbp) in 1999 and the human
genome (≈3.5 Gbp) by 2001.4

After introducing the basic technology of
shotgun DNA sequencing and briefly summa-
rizing the computational and algorithmic results
to date on the problem of assembling shotgun
data sets, this article characterizes the nature of
DNA sequences and improvements in sequenc-
ing technology that affect the computational
problem. It then analyzes three current propos-
als for sequencing the human genome, includ-
ing the one we’re pursuing at Celera Genomics.

Shotgun DNA sequencing basics

In the late 1970s, the first procedures emerged
for determining the sequence of nucleotides
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along a given DNA strand.5,6 In the version used
most commonly today, a biochemical sequenc-
ing reaction produces a collection of geometri-
cally distributed copies of every prefix of the
given DNA strand such that the last nucleotide
or base—A, C, G, or T—of each prefix is known.
In a process called gel electrophoresis, this material
passes through a permeable gel under an applied
voltage, which separates the prefixes in order of
length, letting either a technician or a combina-
tion of a laser, charge-coupled device detector,
and software determine the sequence of nu-
cleotides along one end of the source strand.
How much of the source we can determine is
limited by the fact that the size ratio between
consecutive prefixes approaches 1 and the num-
ber of long prefixes is diminishing geometrically.
With today’s technology, biologists can resolve
on average the source’s first 500 nucleotides and
upwards of 800 to 900 bases for a particularly
clean reaction. The result of such a sequencing
experiment is called a read. Over the last 20 years,
special machines and robots have been developed
that automate much of this process.

To determine the sequence of much longer
stretches of DNA, Frederick Sanger and his col-
leagues devised the shotgun DNA sequencing strat-
egy.7 This approach entails sampling DNA frag-
ments as randomly as possible from the source
sequence and then producing a sequencing read
of the first 300 to 900 bases of one end of each
fragment. To maximize the sequence produced
from each fragment, such experiments involve
sampling fragments whose length is longer than
a read’s maximum expected length. If enough
fragments are sequenced and their sampling is
sufficiently random across the source, the process
should let us determine the source by finding se-
quence overlaps among the reads of fragments
that were sampled from overlapping stretches.
This basic shotgun approach is at the heart of all
current approaches to genome sequencing.

As currently practiced in many DNA se-
quencing centers, the basic shotgun protocol
starts with a pure sample of a large number of
copies of the source DNA whose sequence is to
be determined, typically a segment of 100 kbp
or longer.

1. Technicians randomly fracture the sample
either using sound (sonication) or passing it
through a nozzle under pressure (nebulation),
which produces a uniformly random parti-
tioning of each copy of the source strand
into a collection of DNA fragments.

2. To remove fragments that are too large or
too small, this pool of fragments is size-
selected, typically using size separation un-
der gel electrophoresis and then simply ex-
cising a band of the gel containing the
desired size. With care, this procedure pro-
duces a normally distributed collection of
fragment sizes with a 10% variance.

3. The technicians then insert the size-selected
fragments into the DNA of a genetically en-
gineered bacterial virus (phage), called a vec-
tor. Usually, at most one fragment is inserted
at a predetermined point, called the cloning
site, in the vector. Typically, the number of
vectors where more than one fragment gets
inserted is less than 1%, but can be as low
as 0.01% for some meticulously executed
protocols. The fragments at this point are
often called inserts and the collection of in-
serts is a library.

4. A bacterium is then infected with a single
vector, which reproduces to produce a bac-
terial colony containing millions of copies
of the vector and its associated insert. The
procedure thus has effectively cloned a pure
sample of the given insert. This procedure
repeats simultaneously for as many inserts
as desired for sequencing in the final step.

5. By design, the vector then permits a se-
quencing reaction to be performed, starting
just to the left or right of a source fragment’s
insertion point. The sequencing reaction
produces a read of the first 300 to 900 bases
of one end of the insert.

A key failure in this process occurs if the sam-
pled reads are not randomly sampled but biased
to come from particular regions of the source.
This can happen for three reasons: the fractur-
ing of the fragments might be biased, the inser-
tion of fragments into vectors might be biased,
or some insert/vector combinations might not
clone properly because the insert has reacted tox-
ically with the host/vector environment. Anec-
dotal evidence suggests that the first two biases
are minimal in well-performed experiments, but
the third bias definitely exists. Picking host/vec-
tor combinations for which the insert DNA will
be relatively inert will reduce this toxicity bias.

Sequencing reactions tend to fail for a variety
of reasons. In a production context, investigators
consider a 70 to 80% success rate to be a very
good yield. In initially processing the sequenc-
ing information, technicians must screen these
failed reactions and also screen reads from vec-
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tors where no insert occurred. Moreover, because
the sequencing reaction begins in the vector at
one end of the insert location or the other, the
initial part of a read can consist of the vector
DNA sequence leading up to the beginning of
the insert. This bit of vector sequence must be
carefully identified and removed. Similarly, if an
insert is particularly short, the technicians might
need to trim vector sequence from the end of a
read. After taking these steps, the process will
have produced a set of sequence reads randomly
sampled from the source sequence.

See the sidebar, “The fragment-assembly
problem,” for a discussion of the computational
problem associated with shotgun sequencing.

DNA sequence characteristics

As we’ve seen, when reseachers first began em-
ploying shotgun sequencing in the early 1980s, a
typical source sequence size was 5 to 10 kbp. By
1990, they were shotgun-sequencing cosmid-
sized sources for which G ≈ 40 kbp, and in 1995
the bacteria H. Influenzae of length 1 Mbp was
successfully shotgun sequenced. In the past three
years, 20 bacterial genomes in this size range
have been shotgun-sequenced. In August 1998,
Celera Genomics was formed to shotgun-se-
quence the entirety of the fruit fly Drosophila in
1999 (G ≈ 120 Mbp) and the human genome by
2001 (G ≈ 3.0 Gbp). 

With the trend toward sequencing higher or-

The fragment-assembly
problem
Given the reads obtained from a shot-
gun protocol, the computational prob-
lem, called fragment assembly, is to
infer the source sequence given the
collection of reads. For the purposes of
illustration, we might parameterize a
typical problem occurring in practice
today as follows (see the “Definitions”
box for help with the terminology). For
a source strand of length G = 100 Kbp,
we would then typically sequence R =
1,500 reads of average length L

–
= 500.

Thus, we would collect altogether N =
RL
–

= 750 Kbps of data, so that we have
sequenced on average every base pair
in the source c– = N/G = 7.5 times. The
quantity c– is the average sequencing
coverage, and practitioners say that the
source has been sequenced to 7.5X
coverage. In practice, an investigator
will decide on a given level of coverage
and then sequence inserts until a total
of N = Gc– base pairs of data have been
collected. Software for fragment

assembly must account for the follow-
ing essential characteristics of the data:

• Incomplete coverage: Not every
source base pair is sequenced ex-
actly c– times due to both the sto-
chastic nature of the sampling
and cloning bias I’ve mentioned.
Some portions of the source
might be covered by more than c–

reads, and others might not be
covered at all. In general, there
can be several such gaps or maxi-
mal contiguous regions where the
source sequence has not been
sampled. Gaps necessarily dictate
a fragmented, incomplete solu-
tion to the problem.

• Sequencing errors: The gel-electro-
phoretic experiment yielding a
read, like most physical experi-
ments, is prone to error, especially
near the end of a read where the
signal strength and separation of
consecutive prefix fragments be-
come small. In a very stringently

controlled pro-
duction
environment,
the error rate is
less than 1% in
the first 500 or
so bases. There-
after, the error
rate increases
rapidly, reach-

ing more than 15% from 650 to
900 bases into the read, after
which the resulting sequence is
effectively unusable. (However, I
have seen data sets where an er-
ror rate of 5% occurs in the
“sweet” part of the read, consist-
ing of the first 500 bases.)

• Unknown orientation: DNA is a
double-stranded helix. Which of
the source sequence’s two strands
is actually read depends on the ar-
bitrary way the given insert ori-
ents itself in the vector. Thus we
do not know whether to use a read
or its Watson-Crick complement in
the reconstruction. The Watson-
Crick complement (a1 a2 … an)

c

of a sequence a1 a2 ... an is 
wc(an) ... wc(a2) wc(a1) where
wc(A) = T, wc(T) = A, wc(C) = G,
and wc(G) = C.

I will now develop a mathematical
formulation of the fragment-assembly
problem. For input, we have a collec-
tion of reads 

that are sequences over the four-letter
alphabet Σ = {A, C, G, T}. An ε-layout is
a string S over Σ and a collection of R
pairs of integers, (si,ei)i ∈ [1,R], such that

• if si < ei then fi can be aligned to
the substring S[si,ei] with less than

F = ={ }fi i
R

1Definitions
G Length of target sequence
L
–

Average length of sequence read
R Number of sequencing reads in shotgun data set
N RL

–
, total number of base pairs sequenced

I
–

Average length of a clone inset
c– N/G, average sequence coverage
m– RI

–
/2G, average clone or map coverage
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ganisms (which have an extensive repeat struc-
ture not found in lower-order organisms) and
toward larger and larger source sizes, investiga-
tors commonly see several repetitive substrings
in a source sequence of even moderate size. Be-
fore 1990, this was rarely considered an imped-
iment to sequencing as it was practiced then, but
it is now clearly a major computational difficulty.
Repeats occur at several scales. For example, in

the human T-cell receptor locus, there is a five-
fold repeat of a trypsinogen gene that is 4 kbp
long and that varies 3 to 5% between copies.
Three of these were close enough together that
they appeared in a single shotgun-sequenced
cosmid source.8 Such large-scale repeats are
problematic for shotgun approaches because
reads with unique portions outside the repeat
cannot span it. Smaller repeated elements such

ε |fi| differences, and
• if si > ei then fi can be aligned to

the substring S[ei,si]
c with less

than ε |fi| differences, then
• ∪ i [min(si,ei),max(si,ei)] = [1,|S|].

The string S represents the recon-
struction of the source strand, and the
integer pairs indicate the substrings of S
that gave rise to each read. The order of
si and ei encode the orientation of the
fragment read in the layout—that is,
whether fi was sampled from S or its
complement strand. The parameter ε ∈
[0,1] models the maximum error rate of
the sequencing process.

The set of ε-layouts models the set
of all possible solutions to the frag-
ment-assembly problem. Of course,
there are many such solutions, so the
computational problem is to find one
that is in some sense best. Traditionally,
the fragment-assembly problem has
been phrased as one of finding a short-
est common superstring (SCS) of the
fragment reads within error rate ε; that
is, find an ε-layout for which S is as
short as possible. Unfortunately, as Fig-
ure A illustrates, this appeal to
parsimony often produces over-
compressed results when the source
sequence contains repeated subseg-
ments. This tendency has prompted
the proposal of maximum-likelihood
criteria based on the distribution of
fragment start points in the layout.1

While such a criteria provides a better
objective function, algorithm designs
for computing it have proven elusive.

A common computational architec-
ture for fragment assembly, advocated
by several authors,2–4 divides the prob-
lem into three phases: overlap, layout,

and consensus. The overlap phase
compares every fragment read against
every other read (in both orientations)
to determine if they overlap. Given the
presence of sequencing errors, an over-
lap is necessarily approximate in that
not all characters in the overlapping
region coincide. This problem is a vari-
ation on traditional sequence compari-
son where the degree of difference
permitted is bounded by ε. The best
deterministic designs for finding all ε-
overlaps lets us solve problems on the
order of N = 1 to 5 Mbp in a matter of
minutes on a typical workstation.5 For
contexts requiring even greater speed,
most investigators resort to heuristics
that detect overlapping reads by find-
ing exact common substrings of some
length k using a hashing scheme. Typi-
cally, they choose k to provide the best
compromise between sensitivity and

speed for a given N and ε. Conceptu-
ally, we can think of the result of the
overlap phase as producing an overlap
graph in which every vertex models a
read and every edge an ε-overlap be-
tween two reads.

The layout phase determines the
pairs (si,ei) that position every fragment
in the assembly. In graph theoretic
terms, we accomplish this by selecting
a spanning forest of the overlap graph;
such a subset positions every fragment
with respect to every other, transitively,
through the overlaps on the path be-
tween them. Finding a spanning forest
that optimizes a criterion such as short-
est or most likely is known to be NP-
hard.6 Investigators have proposed
greedy algorithms that come within a
given factor of optimal,7,8 simulated
annealing9 and genetic algorithms, 10

relaxation methods based on generat-

CXr

A B CX X
Xl Xc Xr Xl Xc Xr

Shortest reconstruction

Correct reconstruction

Xc Xr
A B CXX

Xl Xl Xc Xr

X=Xl.Xc.Xr

Fragment
sampling

A X B
Xl Xc Xr

Xl

Figure A. The shortest answer isn’t always the correct one. A DNA source at the upper left
consists of unique stretches A, B, and C separated by a repeated sequence X. Below it, the
source has been sampled perfectly uniformly across the target, as evidenced by the correct re-
construction of the pieces shown at lower right. But note the result in the upper right of a
program that produces the minimum-length reconstruction. The interior portion Xc of the
repeat sequence, which is covered only by reads completely interior to X, is overcompressed.
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as Alus that are small retrotransposons of length
approximately 300 bp do not share this feature
but are still problematic because they cluster and
can constitute up to 50 or 60% of the source se-
quence, with copies varying from 5 to 15% be-
tween each other.9,10 Finally, in telomeric and
centromeric regions, microsatellite repeats of the
form xn are common.9 The repeated “satellite”
x is three to six bases long, n is very large, and

the motif has 1 to 2% variation within it.
Repeats have three characterizing dimensions:

length, copy number, and fidelity between
copies. As the examples above demonstrate, re-
peats found in DNA cover a wide range along
each of these dimensions. From a computational
perspective, it is the long, high-fidelity repeats
of low copy numbers that cause the greatest dif-
ficulty. On a whole-genome scale, the problem

ing either spanning forests or weighted
matchings in order of score,4 problem
simplification by chordal graph collaps-
ing,1 and a reduction to greedy Euler-
ian tour.11 Ultimately, the complicating
factor is the presence of repeated
strings within the source, which has led
to the use of quality values assessing
the accuracy of each base in a read, in
an attempt to distinguish ε-overlaps
that are true from those induced by re-
peats. Currently, such an edge discrimi-
nator coupled with the basic greedy al-
gorithm is employed in the most
widely used phrap program.12

Finally, the consensus phase forms a
consensus-measure multiple alignment
of the reads in all regions where the
coverage is two or greater. The result-
ing consensus character for each posi-
tion of the multiple alignment gives
the ultimate reconstruction S. Like
pairwise sequence comparison,
sequence multiple alignment has been
extensively studied. In most formula-
tions, investigators start with the initial
multiple alignment obtained by pair-
wise merging the alignments between
reads using the overlaps selected for
the spanning forest by the overlap
stage.13 They then refine this initial
multiple alignment using either a win-
dow-sweep optimization, a Hidden-
Markov model gradient-descent algo-
rithm,14 or round-robin realignment.15

Before we return to the discussion
of sequencing, it behooves us to
appreciate some statistics of shotgun
sampling. In an analysis that is essen-
tially the dual of that for packet colli-
sion on an Ethernet (as here we want
packets to collide), Michael Waterman
and Eric Lander determined that if

sampling were perfectly uniform, we
should expect to see16

• of the source strand cov-
ered by some read,

• gaps in the coverage of the
source,

• gap-free segments or contigs of
average length (L–/c–)ec-, and

• gaps of average length  L–/c–.

There are several interesting things
to note about these results. First, the
percentage of the genome covered
depends only on c– and not on the size
of the reads or length of the source.
Second, the number of gaps rises to a
maximum at c– = 1 and declines with
an exponentially vanishing tail there-
after. Contig lengths rise exponen-
tially in c–, and gaps quickly become
very small.

References
1. E. Myers, “Toward Simplifying and Accurate-

ly Formulating Fragment Assembly,” J. Com-

putational Biology, Vol. 2, No. 2, 1995, p.

275–290.

2. H. Peltola, H. Soderlund, and E. Ukkonen, “SE-

QAID: A DNA Sequence Assembly Program

Based on a Mathematical Model,” Nucleic

Acids Research, Vol. 12, No. 1, pp. 307–321.

3. X. Huang, “A Contig Assembly Program Based

on Sensitive Detection of Fragment Overlaps,”

Genomics, Vol. 14, 1992, pp. 18–25.

4. J. Kececioglu and E. Myers, “Exact and Ap-

proximate Algorithms for the Sequence Re-

construction Problem,” Algorithmica, Vol. 13,

Nos. 1-2, 1995, pp. 7–51.

5. E. Myers, “A Sublinear Algorithm for Approx-

imate Keyword Matching,” Algorithmica, Vol.

12, Nos. 4–5, 1994, pp. 345–374.

6. J. Turner, “Approximation Algorithms for the

Shortest Common Superstring Problem,”

Information and Computation, Vol. 83, 1989,

pp. 1–20.

7. J. Tarhio and E. Ukkonen, “A Greedy Approx-

imation Algorithm for Constructing Shortest

Common Superstrings,” Theoretical Com-

puter Science, Vol. 57, 1988, pp. 131–145.

8. A. Blum et al., “Linear Approximation of

Shortest Superstrings,” J. ACM, Vol. 41, No.

4, 1994, pp. 630–647.

9. C. Burks et al., “Stochastic Optimization

Tools for Genomic Sequence Assembly,” Au-

tomated DNA Sequencing and Analysis, M.D.

Adams, C. Fields, and J.C. Venter, eds., Aca-

demic Press, New York, 1994, pp. 249–259.

10. R. Parsons, S. Forrest, and C. Burks, “Genetic

Algorithms for DNA Sequence Assembly,”

Proc. First Conf. Intelligent Systems for Molecu-

lar Biology, AAAI Press, Menlo Park, Calif.,

1993, pp. 310–318.

11. R. Idury and M.S. Waterman, “A New Algo-

rithm for Shotgun Sequencing,” J. Computa-

tional Biology, Vol. 2, No. 2, 1995, pp.

291–306.

12. B. Ewing et al., “Base–Calling of Automated

Sequencer Traces Using phred; Accuracy As-

sessment,” Genome Research, Vol. 8, No. 3,

1998, pp. 175–185.

13. D. Feng and R. Doolittle, “Progressive Se-

quence Alignment as a Prerequisite to Cor-

rect Phylogenetic Trees,” J. Molecular Evolu-

tion, Vol. 25, No. 4, 1987, pp. 351–360.

14. A. Krogh et al., “Hidden Markov Models in

Computational Biology,” J. Molecular Biology,

Vol. 235, No. 5, 1994, pp. 1501–1531.

15. E. Anson and E. Myers, “ReAligner: A Pro-

gram for Refining DNA Sequence Multialign-

ments,” J. Computational Biology, Vol. 4, No.

3, 1997, pp. 369–383.

16. E.S. Lander and M.S. Waterman, “Genomic

Mapping by Fingerprinting Random Clones:

A Mathematical Analysis,” Genomics, Vol. 2,

No. 3, 1988, pp. 231–239.

Fe c−

1− −e c



38 COMPUTING IN SCIENCE & ENGINEERING

initially looks quite daunting. For example, con-
sider human DNA. It contains a number of
ubiquitous repeats such as the Alu above and the
longer LINE (long interspersed nucleotide ele-
ment) elements that have an average length of
1,000 base pairs. The human genome contains
an estimated one million Alus and 200,000 line
elements, making it roughly 10% Alu and 5%
LINE in terms of total content. We further esti-
mate that there are roughly 80,000 distinct genes
in the human genome, and probably 25% of
these have two to five copies within the genome.
There are also large 43-kbp-long RNA pseudo-
gene arrays that occur in tandem clusters and
that vary by only 2 to 3% between copies. Fi-
nally, there have been large 50- to 150-kbp-long
genome duplications where a section of one
chromosome has been duplicated near the cen-
tromere of another. Any attempt to directly
shotgun a large portion or the entirety of a
genome as a single source thus must carefully
contemplate the impact of repeats on its under-
lying algorithms.

While practitioners have ambitiously in-
creased the size of the source sequences, the
technology for obtaining a read has not im-
proved the length of a read L– at a corresponding
rate, leading to greater and greater ratios of ω =
G/L–. Thus, the expected number of gaps grows
asωc–e–c

–
, ignoring the exacerbating effect of clone

bias. Fragmentation of the solution into a col-
lection of gap-separated contigs therefore in-
creases at least linearly with source size for a
fixed level of sequencing coverage. This, com-
bined with the increasing difficulty of correctly
resolving repetitive elements in the source, has
led investigators to develop enhancements to the
shotgun sequencing protocol. 

“Double-barreled” shotgun
sequencing

In the predominant variation on shotgun se-
quencing, inserts are size-selected so that their av-
erage length I– is at least 2L– or longer and both
ends of the insert are sequenced.11 This proce-
dure gives rise to a pair of reads, called mates, that
are in opposite orientations and at a distance from
each other approximately equal to the insert
length. While these mate pairings could operate
in an integral way within the fragment-assembly
software, this information typically serves instead
to confirm the assembly and most importantly to
order contigs with respect to each other. (A con-
tig is a maximal overlapping arrangement of frag-

ments covering a contiguous region of the recon-
structed fragment.) That is, if a read in one contig
has a mate in another contig, we know the orien-
tation of the contigs to each other and have an
idea of the distance between them. At 7.5X cov-
erage, for example, contigs tend to be quite large,
at an average of 66 kbp, and gaps quite small, at
an average of 66 bp. Because there are typically
many mated pairs between a pair of adjacent con-
tigs, we can quite reliably order the contigs. Such
a maximally linked and ordered set of contigs is
called a scaffold (see Figure 1). The next step is to
sequence the small gaps between adjacent contigs
by amplifying a sample of the sequence between
the contigs with a process called PCR (for poly-
merase chain reaction) that only requires knowing
18 to 25 unique bases on either side of the gap to
be amplified.

With the one exception of the TIGR (from
The Institute of Genetic Research) assembler,12

investigators have used mate information only
for confirmations, primarily because it can be
quite unreliable, with on average 10% of re-
ported pairs proving unrelated. There are three
sources of such false positives. 

• Two small fragments from distant parts of
the source might get inserted into the vec-
tor. For such a chimeric clone, the reads at
both ends thus come from uncorrelated
parts of the genome. Appropriate care—
such as size-selecting clones or using asym-
metric linkers in the insertion step—can
keep this source of false pairings to as low as
0.01%. 

• A sample can simply be mistracked as it
flows through the sequencing factory. For
example, a technician might place a mi-
crotiter plate in the wrong orientation
within a stack of plates or transfer materials
to an incorrect destination. Simple precau-
tions such as using asymmetric plates and
dual-bar scanning any transfer can also keep
this source of false positives under 0.1%. 

• In slab gel-sequencing machines, the mate-
rial often does not migrate along a straight
line but gently undulates, causing the opti-
cal-scanning software to misnumber the 32
to 96 lanes of sequencing reactions that run
simultaneously on a given slab. This pre-
dominant source accounts for 10% of the
false-positive rate.

How then should we choose the average size I–

of the inserts in such a strategy? We can define
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the map or clone coverage of such a project as m– =
CI–/G, where the number of clones C is R/2 in
the current context. From the definitions it fol-
lows that m– = c–(I–/ 2L–) is larger than c–, so there
are a factor of fewer gaps in the coverage
of the source by inserts than there are gaps in the
coverage of the source by reads. For example, if
inserts are 5 kbp long, there are a factor of e−5 or
148 fewer clone gaps than sequence gaps. From
another viewpoint, scaffolds are on average 148
times larger than contigs, so that for 7.5X se-
quencing project of a 200-kbp source, we would
expect all the contigs to be ordered by the mate
information.

Recent simulation studies have indicated that
from a purely informatic perspective, there is an
advantage in using long inserts and no advantage
in having some percentage of the reads be un-
paired.13 However, this finding must be tem-
pered against the experimental fact that because
of the different cloning vehicles required to serve
as the vector as the insert becomes larger, it is
more difficult to sequence the ends of long in-
serts, and greater care must be taken to avoid
chimeric clones. Counterbalancing economic
pressure thus encourages the use of single reads
and shorter inserts. Fortunately, we lose little of
the benefits of having long end-sequenced in-
serts in hybrid schemas where a sizable fraction
of a project is single reads and where the paired
reads are from inserts over a distribution of in-
sert lengths skewed to the shorter lengths.

Sequencing the human and other
whole genomes

After the idea that the human genome could be
sequenced began to be discussed in the early to

mid 1980s, the US National Institutes
of Health and Department of Energy
announced the start of the Human
Genome Program (HGP) in 1990,
with an objective to do so by 2005 in
concert with the UK’s Sanger Centre
and other laboratories in Europe and
Japan.14 A single approach, described next, was
adopted and continues to be followed. In the last
few years, several interesting alternative strategies
have emerged, and I describe two of these as well,
the last of which Celera Genomics is actually pur-
suing. This latter plan has a potential to produce
the entire sequence in two years time—by 2001—
at one tenth the cost of the HGP.

The clone-by-clone approach
The HGP proposal involves a hierarchical two-
tiered approach. This approach first randomly
fractures the whole human DNA sequence into
50- to 300-kbp pieces and inserts them into
BACs, which are a vector mechanism designed to
accommodate such large DNA segments. The re-
sulting collection of BAC inserts is maintained in
a library from which investigators can select a par-
ticular BAC insert to amplify for further experi-
mentation. The first step consists of determining
an assembly, or physical map, of these large inserts
that covers the human genome. Given a physical
map, the investigators then pick a minimal tiling
set of the inserts that covers the genome. At the
second level, they shotgun-sequence each of the
inserts in the tiling set. This has been coined a
clone-by-clone approach because once we have the
tiling set of BAC clones, we conceptually imag-
ine sequencing each tiling clone in a march across
the genome (see Figure 2).

The term physical map stems from the obser-
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PCRPCR

Insert

Read1 Read2

Vector

Gap 1 Gap 2
Contig 3Contig 2

Scaffold = {Contig 1, Contig 2, Contig 3}

Contig 1

Figure 1. Mates, contigs,
gaps, and scaffolds. The
top of the figure shows a
blue vector with a green
insert for which read reac-
tions are primed at both
ends. A light green dashed
arc depicts the relation-
ship between the reads
and is used within the as-
sembly shown below it.
The relative order of the
differently colored three
contigs is fixed by the
mate pairings. We then
prime PCR reactions across
the two gaps (primers in
red, polymerase chain re-
actions sequence in gold).
The three contigs in ag-
gregate constitute a single
scaffold.
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vation that such an assembly gives the physical
location of each segment in the genome. Unlike
the fragment-assembly problem, where the com-
plete sequence of the inserts is used to determine
overlaps between them, overlaps between BAC
inserts are determined on the basis of fingerprint
data about each insert, which is necessarily less
informative than knowing the entire sequence
of the insert. Here are several types of finger-
prints that various research groups have used and
the conceptual nature of the information they
convey.

• Restriction length digests: The approximate
lengths of the pieces that result when an in-
sert is split at each occurrence of a particular
substrings of length 4, 6, or 8. The agents
that perform the cutting are called restriction
enzymes.15

• Restriction maps: The approximate locations
along the insert of a selectable set of sub-
strings of length 4, 6, or 8, cut by restriction
enzymes.16

• Oligo probe hybridization: The presence or
absence of each of a set of 12- to 24-length
substrings.17

• STS probes: The presence or absence of a
pair of 18-length substrings between 200
and 1,000 bases apart in the insert.18 (A re-
gion characterized by such a pair is a sequence
tagged site, or STS.)

The STS probe is currently the most widely
used because of the ease, cost, reliability, and au-
tomatibility of determining the information. Even
for these experiments, investigators must deal
with fairly high error rates—roughly 2% false
positives (a probe is reported for an insert when
it does not contain it) and 10 to 20% false nega-
tives (a probe is not reported when it should be).
Most false negatives are due to experimental fail-
ures, while the false positives are expected to be
induced by repetitions in the genome. Such sparse

information of such moderate reliability leaves us
with a problem that is computationally very diffi-
cult to solve optimally and for which there is con-
siderable ambiguity in the answers delivered.19,20

The HGP approach has the advantage that
the outcome is understood and portends to de-
liver most of the genome. Shotgun sequencing
of BACs is now fairly routine. Reliable software
is available, and centers capable of rapidly se-
quencing BACs continue to gear up. Physical
maps, while hard to build, have been prepared
for a number of chromosomes. While not com-
plete, they do cover a significant percentage of
the chromosomes involved. Thus we are certain
to see a reasonable return on continued invest-
ment in the HGP.

HGP’s shortcomings are in terms of cost, effi-
ciency, and, to a lesser extent, the completeness
of what will be determined. Sequencing at this
scale is basically an issue of designing a medium-
sized factory. Issues are simplicity, automatabil-
ity, and cost of each step, and scalability of the
overall process. The HGP design has the draw-
back of involving two separate processes: se-
quencing and physical mapping. While se-
quencing is heavily automatable once an insert
library of fragments has been prepared, investi-
gators must prepare a minimum of 30,000 clone
libraries of BACs by hand and must continue to
laboriously build and try to complete physical
maps of each of the chromosomes. Originally,
all the physical maps were to be completed, at a
modest cost, in the project’s first five years. The
cost has been much heavier than anticipated, and
eight years into the project, maps are available
for only a few chromosomes—and most of these
maps have on the order of hundreds of gaps,
some of considerable size. Also, it is difficult to
construct BAC clones that are not chimeric. By
some estimates, 1 to 5% of the BAC sequences
being sequenced are actually two or more unre-
lated segments of the human genome that have
been inserted together into the BAC.

Physical mapping

BAC shotgun sequencing (x 25,000)

Minimum tiling
set

Human genome

BACs

Reads

Figure 2. The Human Genome Project’s two-
tiered approach. After first fragmenting the ge-
nome into large bacterial-artificial-chromosome-
sized segments, the investigators build a physi-
cal map of them. They then select a minimum
tiling set of the BACs in the map (shown in
green) and shotgun sequence each of these.
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The sequence-tagged connector approach
An interesting proposal that circumvents the
physical-mapping step involves initially se-
quencing both ends of approximately 600,000
BACs.21 BAC clones have an average size of I– =
150 kbp, implying a clone coverage of the hu-
man genome of m– = 30X. Sampling theory tells
us that there will thus be roughly 600,000 × e−30

� 10−7 gaps in the genome’s coverage by BAC
clones; that is, with good probability there will
be no gaps. Unfortunately, the BAC inserts are
produced by partial digestion with restriction
enzymes, implying that BAC endpoints are not
particularly random. Estimating the effect of this
is difficult, but the implication is that there
might be a few gaps despite the high clone cov-
erage. On the other hand, without any further
effort, few of the BACs can be assembled, be-
cause their end sequences constitute a coverage
in sequence of only c– = 0.1. On average, there is
one BAC-end sequence in every 5 kbp segment
of the genome, and few of them overlap.

The next step involves randomly selecting a
few of the BAC clones as seeds of an ordered
clone-by-clone walk. Each of the selected BAC
clones is shotgun-sequenced. Most notably, once
a BAC is sequenced, on average 30 end-
sequences of other BACs will be discovered to
overlap the BAC’s interior. Half will extend into
the genome in each direction, with one having
an overlap, on average, of only 7.5 kbp with the
sequenced BAC. The next step is to shotgun-se-
quence the two minimally overlapping BACs in
each direction and then in turn determine min-
imally overlapping BACs in each direction to se-
quence next. The investigator is therefore effec-
tively discovering how to continue a seeded set
of bidirectional, clone-by-clone walks across the
genome as each clone in each walk is sequenced.
Figure 3 illustrates the process.

The sequence-tagged connector approach

eliminates the physical mapping step.
Moreover, the organization of the se-
quencing factory is simplified because
sequencing BAC ends and the smaller
shotgun inserts are similar sequencing
processes. But, the approach still suf-
fers from needing to make at least
25,000 BAC libraries and because the
BAC clones must be maintained for the
length of the entire project. Getting a consis-
tently successful sequencing reaction for the end
of a BAC is also more difficult, so greater effort
and expense must go to end-sequence BACs.
The quality of the end reads is poorer as well—
on the order of 2 to 5% error. 

The whole-genome shotgun approach
The plan we have developed at Celera Genomics
involves collecting 60 to 70 million high-quality
sequencing reads for a 10X coverage of the
genome. We will use only those portions of a
read that have an error rate of 1% or less, in con-
trast to current practice with BAC shotgunning
where as much of a read as possible is used to get
better coverage with only 6 to 7X and thus re-
duce cost. For a problem on the scale of the hu-
man genome, the ends of such reads, at a 10 to
15% error rate, are too noisy to detect overlaps.
We must use only the high-quality parts of a
read and collect 10X to compensate for the
shorter length. Even so, without any additional
information, assembling this large set of reads is
effectively impossible given the genome’s repet-
itive nature.

Recall, however, that we can end-sequence in-
serts to produce mate pairs. Typically, the insert
lengths are on average 2 kbp. With care, we can
use inserts as long as 10 kbp, although the suc-
cess rate of reactions on such longer clones is
lower, so they are somewhat more expensive to
collect. The plan is for 80% of the reads to be in

Shotgun sequence

Shotgun sequence Shotgun sequence

Shotgun sequence etc. Shotgun sequence etc.

Seed BAC

Overlapping BACs

Overlapping BACs

Figure 3. Ordered shot-
gun sequencing. Start-
ing at the top, we shot-
gun-sequence a selected
seed BAC whose se-
quenced ends are shown
in green. Once the en-
tire sequence of this BAC
(shown as a solid green
line) is revealed, we ob-
serve overlaps with a
number of end se-
quences of other BACs in
the library. We then
shotgun-sequence the
left- and rightmost of
these (shown with a pur-
ple interior). The process
continues iteratively, giv-
ing a BAC-by-BAC walk
across the genome.
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2-kbp mate
pairs and the re-
maining 20% to
be in 10-kbp
mate pairs. I

noted earlier that on current slab gel-sequenc-
ing machines, false pairings of mates occur at
about
a 10% rate because of lane-tracking errors. The
current plan also uses next-generation capillary
gel-sequencing machines in which the material
of each sequencing reaction migrates down its
own physically separate microcapillary tube.
Thus for these machines, the lane-tracking
problem disappears and we can now expect
mate-pairing errors to be less than 1% and pos-
sibly as good as 0.01%. With information of this
quality, investigators can now use mate-pairing
information as a key component of the assem-
bly algorithm.

Intuitively, we understand that mate pairs can
resolve any repeat whose length is shorter than
the distance between mates as follows. Imagine
building an assembly by progressively adding
fragments at a given end (see Figure 4). As long
as you are in a unique stretch of sequence, the
placement of the next maximally overlapping
fragment is obvious and correct. However, when
you enter a repeat of sufficiently high fidelity
with other copies, you begin to place fragments
from many of the copies together. Notice, how-
ever, that while fragments are being incorrectly
incorporated, you are still effectively putting to-
gether a facsimile of the repeat’s sequence. The
real problem develops when you exit the repeat
at the other end: if there are 100 copies of the
repeat that are intertwined at this point, there
are 100 unique flanks into which you could walk
and you don’t know which to take. However,
there is very likely a mate pair that spans the re-
peat in that it has a read in the unique flanking
sequence on each side of the repeat. Such a span-
ning mate indicates which of the 100 options to
take. Moreover, you can resolve the tangle of
reads from different copies within the repeat

stretch by observing that most of these reads
have a mate that is anchored in the sense of be-
ing in a unique part of the genome. From the an-
chored mates on the flanks of the repeat, you can
generally determine enough of the reads actu-
ally sampled from that copy of the repeat to infer
its exact sequence. 

Of course, there will be many repeats in a
genome longer than 10 kbp. To resolve these, we
need mated pairs of reads at longer lengths. For-
tunately, there will be 600,000 BAC end se-
quences produced in anticipation of the ordered
shotgun approach described above. These BAC
end pairs essentially serve as very long-range
mates, albeit of less reliability. Moreover, in sep-
arate radiation-hybrid mapping efforts,22 STS
marker maps that place and linearly order read-
sized sequences roughly every 200 kbp along the
genome have already been constructed. While
these maps are not very accurate, they do give
additional long-range mate pairings of up to any
length required to resolve a repeat. Originally,
we conceived of solving the computational prob-
lem by solving a series of intermarker assembly
problems that require assembling the sequence
between a pair of STS markers or BAC-end se-
quences given the 60 to 70 million reads in the
whole-genome shotgun data set. Simulation
work has shown that with 99.8% probability, we
can unambiguously assemble 99.7% of the se-
quence between the markers.

I’ve spent a fair bit of time discussing how to
assemble a whole-genome data set because this is
the component of the proposal that most critics
think is impossible. In terms of a sequencing fac-
tory, this approach provides the greatest sim-
plicity because we only have to set up a sequenc-
ing pipeline. Moreover, we have to build only
two sequencing libraries from whole human
DNA. We can therefore expend great effort to
insure that these libraries do not contain unde-
sirable artifacts and can completely automate all
the remaining steps, thus making the manpower
required to run the factory very small. Finally,
there is no need to store BAC or other clones for

Repeats

Anchored reads Spanning mates

BAC end

Figure 4. Whole-genome shotgun assembly.
Mated pairs of fragments are black segments
with an intervening green segment connecting
them. Given two BAC end sequences shown in
red, where for the purposes of illustration we
assume there is a gold and purple repeat in the
BAC, the problem is to determine the set of
mated reads that cover the BAC. Mate pairs
that span repeats have their connecting line col-
ored blue, and the reads completely interior to
a repeat are given the repeat’s color. Such reads
are often anchored in the sense that their mate
is not in a repeat.
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any length of time, because once the BACs have
been end-sequenced they are no longer needed
except as PCR templates for gap filling. Coupled
with the new-generation capillary gel-sequenc-
ing machines that give us greater speed and ca-
pacity, the plan will be very efficient in terms of
both time and cost.

Afinal issue centers on understanding
diversity in the human genome. Each
human cell, with the exception of
sperm and egg cells, has two copies of

each chromosome, one version from each par-
ent. The complement of DNA inherited from
one parent is called a haplotype. Each human hap-
lotype varies from another by 0.1%, and the to-
tal number of sites of variation over the human
population takes an estimated 0.3% of the
genome.23 In the clone-by-clone approach, each
assembly of a BAC clone is of a given haplotype,
so the HGP effort will produce a series of over-
lapping clones, each representing some haplo-
type. This is to be contrasted to the whole-shot-
gun approach, where fragments from different
haplotypes come together to give the overall as-
sembly. In this case, we can detect many of the
sites of genetic variation between haplotypes.
Even if we sequence only one pair of haplotypes,
we will detect an estimated three million sites of
single nucleotide variation or polymorphism
during the course of the project.
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