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Motivational Problem

How should one score the alignment of a single letter 

to a column of letters from a multiple alignment?
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Pairwise Alignment Scores

Pairwise substitution scores, for the local alignment of two 

sequences, are implicitly of the form:

��,� = log
	�,�

�
�

where 	�,� is the target frequency with which amino acids �

and � correspond in biologically accurate alignments, and 
�
is the background frequency for amino acid � in proteins.

Schwartz, R.M. & Dayhoff, M.O. (1978) In Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, 

M.O. Dayhoff (ed.), pp. 353-358, Natl. Biomed. Res. Found., Washington, DC.

Karlin, S. & Altschul, S.F. (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268.



Generalization to Multiple Alignments

The score for aligning an amino acid to a multiple alignment 

column should be

�� = log
	�

�

where 	� is the estimated probability of observing amino acid �
in that column. 

Transformed motivational problem:  

How should one estimate the twenty 

components of 	 from a multiple 

alignment column that may contain 

only a few observed amino acids?
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A Bayesian Approach

Define a prior probability distribution over multinomial space for 

the amino acid frequency vectors that characterize real proteins.

When combined with a set of observed amino acids in a 

particular multiple alignment column, Bayes’ Theorem implies 

a posterior distribution over multinomial space, and 	 may be 

derived by integrating over this posterior distribution.   

For purely mathematical reasons, the prior distribution should 

be a Dirichlet distribution, or a Dirichlet mixture, because then 

the posterior distribution is easily calculated as another Dirichlet

distribution or Dirichlet mixture.

Brown, M. et al. (1993) In Proc. First Int. Conf. Intelligent Systems for Molec. Biol. 

L. Hunter, D. Searls, J. Shavlik, Eds., AAAI Press, Menlo Park, CA, pp. 47-55.



Multinomial Space

A multinomial on an alphabet of � letters is a vector 
 of � positive 

probabilities that sum to 1.

The multinomial space Ω� is the space of all multinomials on � letters. 

Because of the constraint on the components of a multinomial, 

Ω� is � − 1 dimensional.

Example:  Ω� is a 2-dimensional 

equilateral triangle.

(0,1,0)

(0,0,1)

(1,0,0)

For proteins, we will be interested 

in the 19-dimensional multinomial 

space Ω��.



The Dirichlet Distribution

Bayesian analysis will work for any prior, but when dealing with 

multinomial space, it is mathematically convenient to require the 

prior to be a Dirichlet distribution*.

The Dirichlet distributions are an �-parameter family of 

probability densities over the � − 1 -dimensional space Ω�.

A particular Dirichlet distribution, represented by a vector α
with positive components, has probability density given by:

ρ � 		= 		�	∏ 	��
����

� ,

where � = Г(∑α�)/∏Г(α�) is a constant chosen so that ρ(�)
integrates to 1. 

* The conjugate prior for the multinomial distribution.

Note:  The Dirichlet distribution with all α� = 1 is the uniform density.



How to Think About Dirichlet Distributions

.



Define the “concentration parameter” α

to be ∑α�.  Then the center of mass of 

the Dirichlet distribution is 
 = α/α.

The greater α, the greater the concentration of probability near 
.  

By Bayes’ theorem, the observation of a single letter “%” 

transforms the Dirichlet prior α into a Dirichlet posterior α′
with identical parameters, except that α′' = α' + 1. 

A Dirichlet distribution may be alternatively parameterized by: (p, α).



Bayes at Work
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Here, we begin with the 

uniform Dirichlet prior 

(1,1) for the probability of 

“heads”, and observe its 

transformation, after 

successive observations 

HTHHTHTH, into the 

posteriors (2,1), (2,2), 

(3,2), etc.

At any given stage, the 

center of mass (i.e. the 

expected probability of 

heads) is given by:

# + ,�

# + ,� 	,	[# . ,�]

Note:  The 2-parameter Dirichlet distributions, which take the 

form �����(1 − �)0��, are also called Beta distributions.



Is the Dirichlet distribution an appropriate prior for 

amino acid frequencies at individual protein positions?

.



Although proteins as a whole have background 

amino acid frequencies 
, it is not the case that 

the frequencies 	 typical of individual protein 

positions tend to be clustered near 
. 

Rather, some positions tend to be charged, some aromatic, some 

hydrophobic, etc., suggesting that prior probability density is 

concentrated in multiple regions within multinomial space.

A Dirichlet mixture is better able to capture this more complex 

prior distribution, but is still convenient for Bayesian analysis.

Brown, M., et al. (1993) “Using Dirichlet mixture priors to derive hidden Markov 

models for protein families.” In: Proc. First Int. Conf. Intelligent Systems for Mol. Biol., 

L. Hunter, D. Searls & J. Shavlik, Eds. AAAI Press, Mento Park, CA, pp. 47-55.



Dirichlet Mixtures

A Dirichlet mixture consists of 1 Dirichlet components, associated 

respectively with positive “mixture parameters” 2�, 2�, … ,24 that 

sum to 1.  Only 	1 − 1 of these parameters are independent.

Each Dirichlet component has the 

usual � free “Dirichlet parameters”,

so an 1-component Dirichlet mixture 

has a total of 1 � + 1 − 1 free 

parameters.

The density of a Dirichlet mixture is 

defined to be a linear combination of 

those of its constituent components.

A Dirichlet mixture max be visualized as a 

collection of probability hills in multinomial space.



Where do Dirichlet Mixture Priors Come From?

No one knows how to construct a Dirichet

mixture prior from first principles.  

This is an instance of the classic, difficult problem of optimization in a rough, 

high-dimensional space.  The only practical approaches known are heuristic.

Given a large number of multiple alignment columns, we seek the 

maximum-likelihood 1-component D.M., i.e. the one that best 

explains the data. 

A Dirichlet mixture prior should capture our knowledge about amino 

acid frequencies within proteins.  However:

So we invert the problem:   Like substitution matrices, D.M. priors may 

be derived from putatively accurate alignments of related sequences.  



Optimization in High-Dimensional Space

Smooth and simple landscapes

Random landscapes

Rough but correlated landscapes

Relatively easy and fast to find optimum.

Algorithms:  Newton’s method; gradient descent.

Difficult to find provably optimum solution.

Fairly effective heuristic methods available.

Algorithms:  Simulated annealing; EM; Gibbs sampling.

Success depends on details of landscape.

Finding optimal solution intractable. 

Algorithms:  Brute force enumeration.

Difficulties:  Local optima.

Images courtesy of the internet



Heuristic Algorithms

Ye, X., et al. (2011) "On the inference of Dirichlet mixture priors for protein sequence 

comparison." J. Comput. Biol. 18:941-954.

Geman, S. & Geman, D. (1984) “Stochastic relaxation, Gibbs distributions, and the Bayesian 

restoration of images.” IEEE Trans. Pattern Analysis and Machine Intelligence 6:721-741.

Metropolis, N., et al. (1953) “Equation of state calculations by fast computing machines.” 

J. Chem. Phys. 21:1087-1092.

The Metropolis algorithm and simulated annealing

Gibbs sampling

applied to Dirichlet mixtures

Nguyen, V.-A., et al. (2013) “Dirichlet mixtures, the Dirichlet process, and the structure 

of protein space." J. Comput. Biol. 20:1-18.

Dempster, A.P., et al. (1977) "Maximum likelihood from Incomplete data via the EM 

algorithm." J. Royal Stat. Soc., Series B 39:1-38. 

Expectation maximization (EM)

applied to Dirichlet mixtures

Brown, M., et al. (1993) In: Proc. First Int. Conf. Intelligent Systems for Molec. 

Biol., L. Hunter, D. Searls, J. Shavlik, Eds., AAAI Press, Menlo Park, CA, pp. 47-55.



Gibbs Sampling for Dirichlet Mixtures

Find:  The 1 Dirichlet components that maximize the 

likelihood of the data

Given:  5 multiple alignment columns

Algorithm

1)  Initialize by associating columns with components

2)  Derive the parameters for each Dirichlet component     

from the columns assigned to it

3)  In turn, sample each column into a new component, 

using probabilities proportional to column likelihoods

4)  Iterate



How Many Dirichlet Components 

Should There Be?

Problem:   The more components, the greater the likelihood 

of the data.  The criterion of maximum-likelihood alone

leads to overfitting.

One solution:   The Minimum Description Length (MDL) 

principle.

Grunwald, P.D. (2007) The Minimum Description Length Principle. MIT Press, Cambridge, MA.

Idea:  Maximize the likelihood of the data.



A model that is too simple underfits the data

From: “A tutorial introduction to the minimum description 

length principle” by Peter Grünwald 

A simple model, i.e. one 

with few parameters, will 

have low complexity but 

will not fit the data well.



A model that is too complex overfits the data

A complex model will 

fit the data well, but is 

itself long to describe.



A model with an appropriate number of parameters

Everything should be made as 

simple as possible, but not 

simpler.  – Albert Einstein

A model should be as detailed 

as the data will support, but no 

more so.  – MDL principle



The Minimum Description Length Principle

A set of data 6 may be described by a parametrized theory, 

chosen from a set of theories called a model, 7. 

MDL theory defines the complexity of a model, COMP 7 .  

It may be thought of as the log of the effective number of 

independent theories the model contains.

DL 6 7 , the description length of 6 given 7, is the negative 

log probability of 6 implied by the maximum-likelihood theory 

contained in 7. 

The MDL principle asserts that the best model for describing 6
is that which minimizes:       DL 6 7 + COMP 7 .

Grunwald, P.D. (2007) The Minimum Description Length Principle. MIT Press, Cambridge, MA.

Effect:  More complex models are penalized



The Optimal Number of Dirichlet Components 
(estimated using Gibbs sampling algorithm)

Data set:  “diverse-1216-uw”, containing 315,585 columns with an average of 

76.0 amino acids per column, from:   https://compbio.soe.ucsc.edu/dirichlets/index.html

Ye, X., et al. (2011) J. Comput. Biol. 18:941-954.

Decrease in total 

description length:     

1.0654 bits/a.a.

using a 35-component 

Dirichlet mixture

Problem:  How effective is 

the algorithm at finding a 

maximum-likelihood DM? 

Solution found by EM



The Dirichlet Process

The Dirichlet Process (DP) is used to model mixtures with 

an unknown or an unbounded number of components.

The name derives from a generalization of the Dirichlet

distribution to an infinite number of dimensions, to model 

the weights of these components. 

A DP may be thought of as assigning a generalized prior probability to mixtures with an 

infinite of components.

A DP is completely specified by two elements: 

A prior distribution @ over the parameters of the underlying distribution 

Many distributions may be modeled as mixtures of an underlying 

distribution.  For example, the distribution of points along a line 

may be modeled by a mixture of normal distributions.

A positive real hyperparameter, which we will call γ, which defines a prior 

on the weights of the components

The smaller γ, the greater the implied concentration of weight in a few components.

Antoniak, C.E. (1974) Ann. Stat. 2:1152-1174.

(0,1,0)

(0,0,1)

(1,0,0)
Component 

weights



The Chinese Restaurant Process

A restaurant with an infinite number of tables.

People enter sequentially and sit randomly at tables, following these probabilities:

At an occupied table A, with probability proportional to the number of 

people 5B already seated there;

At a new, unoccupied table, with probability proportional to γ.

Example: 8 people already seated:   3 at Table 1;   5 at Table 2; γ = 2.
Probability to sit at Table 1:           0.3

Probability to sit at Table 2:           0.5

Probability to sit at a new table:  0.2 

Each table corresponds to a component, with its parameters chosen randomly 

according to the prior distribution @.

The proportion of people seated at a table corresponds to its weight.

Ferguson, T.S. (1973) Ann. Stat. 1:209-230.



When sampling a column E into a component:

If E was the only column associated with its old component, abolish 

that component.

Allow E to seed a new component, with probability proportional to γ.  

This may be calculated by integrating γ	Prob E 	 Prob(	|α) over Ω��
and Dirichlet parameter space, using the prior density @.

If a new component is created, sample its parameters, as below.

Dirichlet-Process Modifications 

to the Gibbs Sampling Algorithm

When calculating Dirichlet parameters for a component:

Sample the parameters from the posterior distribution implied by @ and 

the columns assigned to the component.



Component Likelihoods

Prob component	A 							∝ 			 NB 	
Γ αB

Γ αB + P 	QΓ(αB,� + P�)
Γ(αB,�)

��

�R�
	

Prob new	component 		∝ 			γ			 Γ T
Γ T + P 			Q

Γ(β
� + P�)
Γ(β
�)

��

�R�

Total number of amino acids in column:                                                       P
Number of occurrences of amino acid � in column:                                         P�

Dirichlet parameters for component A:                                                             αB,�
Sum of Dirichlet parameters for column A:                                                  αB
DP hyperparameter for prior over Dirichlet-distribution parameter space:      β
DP hyperparameter for component weights:                                                      γ
Background frequency for amino acid �:                                                         
�

Number of columns associated with component A:                                                NB



Decrease in Total Description Length as a Function 

of the Dirichlet Process Hyperparameters β and γ



Decrease in Total Description Length as a Function 

of DP-Sampler Iteration   (β = 400;  γ = 100)



Total Number of Components, and Number Supported by 

the MDL Principle, as a Function of DP-Sampler Iteration



Tradeoff Between Number of Dirichlet Components and 

Decrease in Total Description Length per Amino Acid



Visualizing Dirichlet Mixture Components

Reorder the amino acids: RKQEDNHWYFMLIVCTSAGP

Represent the target frequency 	� 	for an amino acid by a symbol 

for its implied log-odds score �� = log� 	�/
� as follows: 



A Reordered Subset of a 134-Component Dirichlet Mixture



The Topography of Amino Acid Multinomial Space

Group A:

The main ridge



Another Section of the Main Ridge



Group B:  Hydrophylic Positions Favoring Glycine or Proline



Group C:    Positions Favoring Single Amino Acids



Slice Sampling γ
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