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The genomic revolution is fully upon us in 2006 and the pace of

discovery is set to accelerate with the emergence of ultra-high-

throughput sequencing technologies. Our complete genome

collection of bacteria and archaea continues to grow in number

and diversity, as genome sequencing is applied to an array of

new problems, from the characterization of the pan-genome to

the detection of mutation after experimentation and the

exploration of microbial communities in unprecedented detail.

The benefits of large-scale comparative genomic analyses are

driving the community to think about how to manage our public

collections of genomes in novel ways.
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Introduction
Twenty years ago a student might have earned a doc-

torate from the sequencing and analysis of a single gene.

Although not as routine as it might well be in the future, it

is now feasible to require a student to earn a PhD by

generating and analysing one or more genomes. Likewise,

only ten years ago, most software for manipulating pieces

of DNA (e.g. to find restriction sites for recombinant

DNA studies) could not handle a sequence of 100 kb,

the size of a large, but not giant, phage (http://giantvir-

us.org); yet now we have vast numbers of tools and

databases for the manipulation of complete genomes [1].

The number of bacterial and archaeal genomes has grown

exponentially in the past decade. It has doubled in the

past two years and we now have more than 300 completed

genomes from these two domains of life in public data-

bases [2�]. We expect to have at least 1000 draft genomes

within a year or two [3�]. Our capacity to generate and

analyze genome sequences has grown at an astonishing

rate, but we are on the cusp of yet another leap forward,

with the advent of a new family of ultra-high-throughput,

low-cost sequencing methods [4�,5,6��]. This revolution
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is creating new opportunities as well as challenges. High-

quality comparative genomic analysis of hundreds of

genomes depends on the availability of a framework

with three parts: a large collection of genomes; adequate

tools and analysis techniques; and relevant and pressing

scientific questions. Here, we review key contributions,

highlight challenges and speculate on what the future of

large-scale comparative genomics will hold.

Our complete genome collection
Our ability to draw useful comparisons from hundreds of

genomes depends on the taxonomic and ecological com-

position of our available genome collection. The number

of complete genomes is continuing to grow into the

hundreds (and thousands for viruses, organelles, and

plasmids) and yet is still essentially a disjointed collection

of isolates, which have been sequenced for a large variety

of reasons. The most obvious reason is to mine genomes

for the benefit of human health and wealth, and biases

towards the sequencing of pathogens and organisms of

economic consequence are clearly evident [7]. This bias is

now being balanced by interest in isolates from the

environment [8��], and the genome collection of the

future will be vastly richer and more complex in terms

of evolutionary and ecological diversity than the current

one. New sequencing technologies are making possible

the sequencing of random community DNA and single

cells of bacteria, without the need for cloning or labora-

tory cultivation [4�,5,6��]. These technologies are set to

revolutionize fields as diverse as microbial ecology [9] and

human health, as, for example, researchers explore the

metabolic capacity of microbial communities in the

human gut [10,11��].

The number of closely related genomes is also set to

increase, further compounding existing biases, but also

opening up the possibility of detailed studies of the

genomic evolution over even the smallest time scales.

The concept of the pan-genome, or the fact that the gene

pool of many microbial species is far larger than the

number of genes found in any single genome, is one of

the most important discoveries of the genomic era. A

landmark study of seven Streptococcus agalactiae genomes

(five of which were generated de novo for the purpose

of this study) has proved that sampling more genomes

would continue to reveal new genes — on average 33

per genome [12��]. A subsequent analysis of seven Escher-
ichia coli genomes predicts that an average of 441 new

genes will be provided by the sequencing of each new

isolate [13�]. Mathematical modeling suggests that hun-

dreds of genomes of other species will follow the same

trend [14�]. The significance of the pan-genome is not
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yet understood, but it might be involved in niche adapta-

tion [15].

Sequencing now offers a realistic alternative to the use of

comparative genomic hybridization (CGH) microarrays,

which, unlike genome sequencing, cannot detect novel

genes. In fact, genome sequencing is currently being used

as a tool for unraveling the molecular basis of phenotypic

differences among strains that diverged by as little as 200

generations [4�]. Strikingly, a recent study of Myxococcus
xanthus has recently revealed a single mutation in the huge

9.14 Mb genome of an evolved strain [16] that can trans-

form an evolutionary cheater to a social cooperator [17].

A new chapter in comparative genomics is also about to be

written as we move from using metagenomics to assay

natural microbial communities, to the ambitious and

perhaps more useful practice of ‘community whole gen-

ome sequencing’. For example, whereas the human gut

metagenome has been explored using metagenomic

approaches [11��], the Human Gut Microbiome Initiative

(HGMI) aims to produce deep draft genomes of 100

intestinal species (http://www.genome.gov/Pages/

Research/Sequencing/SeqProposals/HGMISeq.pdf).

This approach enables the study of the total genes

involved in producing the metabolic capacity of a com-

munity, the levels of redundancy, the rates of horizontal

transfer based on confirmed proximity of species, and the

role of the pan-genome in bacterial adaptation.

Such community-level studies serve as a stark reminder

that we have only just begun to sample the natural

microbial diversity [7]. Table 1 lists the members of a

simple community found in sump-tanks in an engineer-

ing workshop [18]. This low-diversity community (47

species in total) contains many pathogens and is domi-

nated by proteobacteria (the most sampled bacterial

division with respect to genome sequencing studies).

Although these are the two most significant biases in

our current genome collection, [7] this community still

contains a significant proportion of as-of-yet unsampled

genera and species, and a few species of particular interest

(e.g. E. coli). This would be a fascinating community to

sequence because it provides further evidence that the

species–area relationship applies to microbes [18,19].

Using this community, for example, it would be possible

to test for a corresponding ‘gene–area’ relationship, and, if

it exists, to characterize it.

Requirements for the comparison of
hundreds of genomes
The informatics associated with annotating or analyzing a

hundred, or even one thousand, genomes instead of one

might seem daunting to many, but to a growing number of

researchers with adequate resources it is vastly preferable

because of the power of comparative methods [3�]. Hand-

ling genomic data is becoming increasingly easy, because
Current Opinion in Microbiology 2006, 9:499–504
the software, databases and analysis tools that have

emerged over the past years become tried-and-tested,

new scaled-up resources are developed and we gain an

improved community infrastructure for enabling the ana-

lysis of hundreds of genomes [1].

Certainly in the case of annotation, quality improves with

the number of relevant genomes available for comparison,

especially with respect to accurate gene prediction [20�].
Likewise, many biological patterns only become ‘visible’

through comparative genomic approaches, such as gene

fusions [21], pseudogenes [22] or the non-coding RNAs of

the ‘RNome’ [23]. This, of course, also extends to the

study of orphan and lineage-specific genes, which can

only be properly characterized in light of many related

sequences. Take, for example, the fact that genomes with

the largest numbers of orphans are often those that are the

most evolutionarily or ecologically distinct [24,25]. Even

for well-characterized genomes, the large number of

uncharacterized and orphan genes can be a major bottle-

neck, for example in the study of pathogenesis [26].

Computational studies of hundreds of genomes depend

on high quality annotations that must be directly compar-

able. However, genomic annotations, when deposited

into the databases (DDBJ [http://www.ddbj.nig.ac.jp/;

Japan], EMBL [http://www.ebi.ac.uk/embl/; UK] and

GenBank [http://www.ncbi.nlm.nih.gov/Genbank/

index.html; USA]) of the International Nucleotide

Sequence Database Collaboration (INSDC) vary in their

level of detail, choice of terms and language and the exact

types of features reported (e.g. proteins, tRNAs, riboso-

mal operons and repeats) [27]. The solution to this

problem is the development of new databases that com-

bine and standardize information from a variety of sources

and apply uniform reannotation techniques [28,29�,30�].

However, the standardization of in silico resources is not

enough. We must also improve annotations through

empirical work on specific loci [31��]. For example, an

increasing number of annotations are being validated by

transcriptomic [32�] or proteogenomic experiments that

verify the expression, start and stop positions of proteins

[32�]. To support the integration of empirical annotations

with submitted public genome sequences, the INSDC

has developed a Third Party Annotation project that

collects peer-reviewed reannotations of genomic

sequences from anyone in the community [33].

Recognition of the benefits of expert curation and the

value of having a large collection of genomes with which

to create an ‘annotation and analysis environment’ are

driving a paradigm shift in the way we build annotation

tools [34] and maintain genomic databases [3�]. The

SEED database (http://theseed.uchicago.edu/FIG/

index.cgi) aims to use expert curation of various pathways

and traits to annotate the first 1000 genomes [3�]. Thus,
www.sciencedirect.com
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Table 1

Species composition of a sump-tank communitya.

Species C CU O Total

Class Family Genus Species G S G S G S G S

Actinobacteria Microbacteriaceae Rathayibacter rathayi

Micrococcaceae Arthrobacter atrocyaneus 2 2

aurescens 2 1 2 1

Kocuria rosea 1 1

Micrococcus luteus 1 1

lylae 1 1

Bacilli Bacillaceae Bacillus psychrosaccharolyticus 9 5 42 56

Alphaproteobacteria Brucellaceae Ochrobactrum anthropi 1 1 1 1

Betaproteobacteria Alcaligenaceae Achromobacter xylosoxidans

Acidovorax avenae 3 1 3 1

delafieldii 3 3

facilis 3 3

Neisseriaceae Neisseria mucosa 2 4 5 11

Oxalobacteraceae Janthinobacterium lividum 1 1

Gammaproteobacteria Altermonadaceae Shewanella putrefaciens 1 2 18 4 21 4

Enterobacteriaceae Cedecea davisae

Citrobacter freundii 2 2

koseri 2 1 2 1

Enterobacter aerogenes 1 2 3

amnigenus 1 2 3

cloacae 1 1 2 3 1

hormaechei 1 2 3

intermedius 1 2 3

pyrinus 1 2 3

Escherichia coli 5 5 4 4 28 26 37 35

Klebsiella planticola 1 3 4

pneumoniae 1 1 3 2 4 3

Kluyvera ascorbata

cryocrescens

Leclercia adecarboxylata

Morganella morganii

Pantoea agglomerans 1 2 3

Pectobacterium chrysanthemi 1 1 1 1

Proteus vulgaris 1 1 2

Salmonella typhimurium 5 1 2 16 4 23 5

Serratia marcescens 1 1 1 2 1

odorifera 1 1 2

Moraxellaceae Acinetobacter johnsonii 1 1 4 6

Pseudomonadaceae Pseudomonas aeruginosa 7 1 3 1 13 6 23 8

alcaligenes 7 3 13 23

balearica 7 3 13 23

mendocina 7 3 13 1 23 1

pseudoalcaligenes 7 3 13 23

putida 7 1 3 13 4 23 5

stutzeri 7 3 13 1 23 1

Vibrionaceae Vibrio parahaemolyticus 4 1 1 18 23 1

Xanthomonadaceae Stenotrophomonas maltophilia 1 1 2 1 3 2

a Each species in a well-characterized environment [18,unpublished data] was compared with the GOLD [37�] to determine the number of

complete published (C), complete unpublished (CU), and ongoing (O) genome projects at the genus (G) and species (S) level. This shows that

7 of the 47 species in this community are not represented at the genus level, and 23 are represented at the genus level by at least one genome

project but not at the species level.
users of this approach have the best possible annotations

available for downstream use, for example to detect

duplicated or missing genes within known pathways

[35] or to detect novel differences in metabolic capacity

between two or more genomic datasets [36�].

The need to capture expert curations extends to top level

information describing genomes. For example, the
www.sciencedirect.com
Genomes Online Database (GOLD; http://www.geno-

mesonline.org/), the ‘gold’ standard for tracking ongoing

and completed genome projects, has recently integrated

into its version 2.0 a large amount of curated metadata

from the literature [37�]. Further, this information is

available for download and is imported into the Inte-

grated Microbial Genomes system [30�]. The need for

more metadata to describe collections of genomes and the
Current Opinion in Microbiology 2006, 9:499–504
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benefits of this, especially in the realm of eco-genomic

studies, has recently been reviewed [38��]. A call for

improved capture of additional information at the time

of submission of genomes to the INSDC [39] has led to

the formation of the Genomic Standards Consortium

(GSC; http://gensc.sf.net). This international group is

working together towards the creation of a richer set of

descriptions of complete genomes and metagenomes

[40]. Two key drivers for the extension of metadata

capture, in addition to the large number of environmental

genomes and metagenomes, are the fact that far more

genomes in the future will only be completed to draft

stage and the emergence of new sequencing technologies.

What questions can be addressed through
the comparison of hundreds of genomes?
With a good infrastructure supporting the analysis of large

collections of genomes, the number of computational

studies that can be imagined becomes boundless. The

true power of large-scale comparative genomic studies

lies in their ability to identify and characterize biological

trends (or even rules) that explain particular phenomena

or that highlight interesting exceptions [7]. For example,

with a coding capacity of only 51%, the genome of Sodalis
glossinidius, which is evolving from a free-living bacterium

to a mutualist endosymbiont, is a classic exception to the

rule that gene density is conserved across bacteria from

the smallest to the largest genome sizes [22].

The comparative approach can be extended to explore

and characterize any pattern that is widely shared among

microbes, and improves in power with the number of

genomes included. Such patterns include the distribution

of a range of structural features [41�], the global char-

acteristics of proteomes [42], the abundances of repetitive

sequences [43], the relative abundances of specific types

of genes, such as two-component systems [44], or the

speed and action of particular processes, such as gene

movement and loss of synteny [45�]. Large-scale compu-

tational studies can also be used to search for relationships

between genomic features and ecology [7,29�], recon-

struct evolutionary relationships among genomes

[46�,47��], and explore the concept of a bacterial species

[48��]. The comparative approach yields fundamental

insights into the function and evolution of genomes,

but can also lead to practical results. For example, under-

standing interactions between phage and bacteria

through comparative genomic studies has use in engi-

neering widespread phage protection for industrially

important bacteria used in bioprocessing activities (e.g.

fermentation) [49].

Conclusions and future outlook
The analysis of microbial genomes is continuing to shed

light on our fundamental understanding of microbiology

[50�]. Although comparative genomic studies of hundreds

of genomes are still relatively rare compared with
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comparative genomic studies of particular groups of bac-

teria, they are rapidly increasing in number. Closing the

gap between our ability to generate vast quantities of data

using computational methods and our ability to ensure

resulting annotation and analyses of the highest quality

(especially through curation) will be a major goal of the

next decade. If the community can continue to provide

critical stewardship of its complete genome collection

[40], this will open the doors to ever more powerful

comparative genomic studies, especially in the future,

as whole genome collections from natural microbial com-

munities and evolutionary time-series studies become

available.
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