
180 6 Dynamic Programming Algorithms

log
gn

i,j

f(j) .

For large n, the resulting PAM matrices often allow one to find related

proteins even when there are practically no matches in the alignment. In this

case, the underlying nucleotide sequences are so diverged that their compar-

ison usually fails to find any statistically significant similarities. For example,

the similarity between the cancer-causing ν-sis oncogene and the growth fac-

tor PDGF would probably have remained undetected had Russell Doolittle

and colleagues not transformed the nucleotide sequences into amino acid

sequences prior to performing the comparison.

6.8 Local Sequence Alignment

The Global Alignment problem seeks similarities between two entire strings.

This is useful when the similarity between the strings extends over their en-

tire length, for example, in protein sequences from the same protein family.

These protein sequences are often very conserved and have almost the same

length in organisms ranging from fruit flies to humans. However, in many

biological applications, the score of an alignment between two substrings of

v and w might actually be larger than the score of an alignment between the

entireties of v and w.

For example, homeobox genes, which regulate embryonic development, are

present in a large variety of species. Although homeobox genes are very dif-

ferent in different species, one region in each gene—called the homeodomain—

is highly conserved. The question arises how to find this conserved area and

ignore the areas that show little similarity. In 1981 Temple Smith and Michael

Waterman proposed a clever modification of the global sequence alignment

dynamic programming algorithm that solves the Local Alignment problem.

Figure 6.16 presents the comparison of two hypothetical genes v and w of

the same length with a conserved domain present at the beginning of v and

at the end of w. For simplicity, we will assume that the conserved domains

in these two genes are identical and cover one third of the entire length, n, of

these genes. In this case, the path from source to sink capturing the similarity

between the homeodomains will include approximately 2
3n horizontal edges,

1
3n diagonal match edges (corresponding to homeodomains), and 2

3n vertical

edges. Therefore, the score of this path is

−
2

3
nσ +

1

3
n−

2

3
nσ = n

(

1

3
−

4

3
σ

)



6.8 Local Sequence Alignment 181

However, this path contains so many indels that it is unlikely to be the high-

est scoring alignment. In fact, biologically irrelevant diagonal paths from

the source to the sink will likely have a higher score than the biologically

relevant alignment, since mismatches are usually penalized less than indels.

The expected score of such a diagonal path is n(1
4 −

3
4µ) since every diagonal

edge corresponds to a match with probability 1
4 and mismatch with proba-

bility 3
4 . Since (1

3 −
4
3σ) < (1

4 −
3
4µ) for many settings of indel and mismatch

penalties, the global alignment algorithm will miss the correct solution of

the real biological problem, and is likely to output a biologically irrelevant

near-diagonal path. Indeed, figure 6.16 bears exactly this observation.

When biologically significant similarities are present in certain parts of

DNA fragments and are not present in others, biologists attempt to maxi-

mize the alignment score s(vi . . . vi′ , wj . . . wj′ ), over all substrings vi . . . vi′

of v and wj . . . wj′ of w. This is called the Local Alignment problem since the

alignment does not necessarily extend over the entire string length as it does

in the Global Alignment problem.

Local Alignment Problem:

Find the best local alignment between two strings.

Input: Strings v and w and a scoring matrix δ.

Output: Substrings of v and w whose global alignment, as

defined by δ, is maximal among all global alignments of all

substrings of v and w.

The solution to this seemingly harder problem lies in the realization that

the Global Alignment problem corresponds to finding the longest local path

between vertices (0, 0) and (n, m) in the edit graph, while the Local Align-

ment problem corresponds to finding the longest path among paths between

arbitrary vertices (i, j) and (i′, j′) in the edit graph. A straightforward and in-

efficient approach to this problem is to find the longest path between every

pair of vertices (i, j) and (i′, j′), and then to select the longest of these com-

puted paths.10 Instead of finding the longest path from every vertex (i, j)

to every other vertex (i′, j′), the Local Alignment problem can be reduced

to finding the longest paths from the source (0,0) to every other vertex by

10. This will result in a very slow algorithm with O(n4) running time: there are roughly n2

pairs of vertices (i, j) and computing local alignments starting at each of them typically takes
O(n2) time.



182 6 Dynamic Programming Algorithms

--T--CC-C-AGT--TATGT-CAGGGGACACG--A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

A A T T GCCGCCG T CG T T T T C AGC AG T T A T G T C AGA T C
T
C
C
C
A
G
T
T
A
T
G
T
C
A
G
G
G
G
A
C
A
C
G
A
G
C
A
T
G
C
A
G
A
G
A
C

LocalGlobal

Figure 6.16 (a) Global and (b) local alignments of two hypothetical genes that each
have a conserved domain. The local alignment has a much worse score according to
the global scoring scheme, but it correctly locates the conserved domain.



6.8 Local Sequence Alignment 183

Figure 6.17 The Smith-Waterman local alignment algorithm introduces edges of
weight 0 (here shown with dashed lines) from the source vertex (0, 0) to every other
vertex in the edit graph.

adding edges of weight 0 in the edit graph. These edges make the source

vertex (0,0) a predecessor of every vertex in the graph and provide a “free

ride” from the source to any other vertex (i, j). A small difference in the

following recurrence reflects this transformation of the edit graph (shown in

figure 6.17):

si,j = max















0

si−1,j + δ(vi,−)

si,j−1 + δ(−, wj)

si−1,j−1 + δ(vi, wj)

The largest value of si,j over the whole edit graph represents the score

of the best local alignment of v and w; recall that in the Global Alignment

problem, we simply looked at sn,m. The difference between local and global

alignment is illustrated in figure 6.16 (top).

Optimal local alignment reports only the longest path in the edit graph. At

the same time, several local alignments may have biological significance and

methods have been developed to find the k best nonoverlapping local align-

ments. These methods are particularly important for comparison of multido-

main proteins that share similar blocks that have been shuffled in one protein

compared to another. In this case, a single local alignment representing all

significant similarities may not exist.



184 6 Dynamic Programming Algorithms

6.9 Alignment with Gap Penalties

Mutations are usually caused by errors in DNA replication. Nature fre-

quently deletes or inserts entire substrings as a unit, as opposed to deleting

or inserting individual nucleotides. A gap in an alignment is defined as a con-

tiguous sequence of spaces in one of the rows. Since insertions and deletions

of substrings are common evolutionary events, penalizing a gap of length x

as −σx is cruel and unusual punishment. Many practical alignment algo-

rithms use a softer approach to gap penalties and penalize a gap of x spaces

by a function that grows slower than the sum of penalties for x indels.

To this end, we define affine gap penalties to be a linearly weighted score

for large gaps. We can set the score for a gap of length x to be −(ρ + σx),

where ρ > 0 is the penalty for the introduction of the gap and σ > 0 is the

penalty for each symbol in the gap (ρ is typically large while σ is typically

small). Though this may seem to be complicating our alignment approach, it

turns out that the edit graph representation of the problem is robust enough

to accommodate it.

Affine gap penalties can be accommodated by adding “long” vertical and

horizontal edges in the edit graph (e.g., an edge from (i, j) to (i + x, j) of

length−(ρ+σx) and an edge from (i, j) to (i, j +x) of the same length) from

each vertex to every other vertex that is either east or south of it. We can then

apply the same algorithm as before to compute the longest path in this graph.

Since the number of edges in the edit graph for affine gap penalties increases,

at first glance it looks as though the running time for the alignment algorithm

also increases from O(n2) to O(n3), where n is the longer of the two string

lengths.11 However, the following three recurrences keep the running time

down:

↓
si,j= max

{

↓
si−1,j −σ

si−1,j − (ρ + σ)

→
s i,j= max

{

→
s i,j−1 −σ

si,j−1 − (ρ + σ)

11. The complexity of the corresponding Longest Path in a DAG problem is defined by the
number of edges in the graph. Adding long horizontal and vertical edges imposed by affine
gap penalties increases the number of edges by a factor of n.



6.10 Multiple Alignment 185

si,j = max











si−1,j−1 + δ(vi, wj)
↓
si,j
→
s i,j

The variable
↓
si,j computes the score for alignment between the i-prefix of

v and the j-prefix of w ending with a deletion (i.e., a gap in w), while the

variable
→
s i,j computes the score for alignment ending with an insertion (i.e.,

a gap in v). The first term in the recurrences for
↓
si,j and

→
s i,j corresponds to

extending the gap, while the second term corresponds to initiating the gap.

Essentially,
↓
si,j and

→
s i,j are the scores of optimal paths that arrive at vertex

(i, j) via vertical and horizontal edges correspondingly.

Figure 6.18 further explains how alignment with affine gap penalties can

be reduced to the Manhattan Tourist problem in the appropriate city grid. In

this case the city is built on three levels: the bottom level built solely with

vertical ↓ edges with weight −σ; the middle level built with diagonal edges

of weight δ(vi, wj); and the upper level, which is built from horizontal edges

→ with weight −σ. The lower level corresponds to gaps in sequence w, the

middle level corresponds to matches and mismatches, and the upper level

corresponds to gaps in sequence v. Also, in this graph there are two edges

from each vertex (i, j)middle at the middle level that connect this vertex with

vertex (i + 1, j)lower at the lower level and with vertex (i, j + 1)upper at the

upper level. These edges model a start of the gap and have weight −(ρ + σ).

Finally, one has to introduce zero-weight edges connecting vertices (i, j)lower

and (i, j)upper with vertex (i, j)middle at the middle level (these edges model

the end of the gap). In effect, we have created a rather complicated graph,

but the same algorithm works with it.

We have now introduced a number of pairwise sequence comparison prob-

lems and shown that they can all be solved by what is essentially the same

dynamic programming algorithm applied to a suitably built Manhattan-style

city. We will now consider other applications of dynamic programming in

bioinformatics.

6.10 Multiple Alignment

The goal of protein sequence comparison is to discover structural or func-

tional similarities among proteins. Biologically similar proteins may not ex-

hibit a strong sequence similarity, but we would still like to recognize resem-



186 6 Dynamic Programming Algorithms

−σ −σ −σ −σ

−σ −σ −σ −σ

−σ −σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−(ρ + σ)

−(ρ + σ)

+0

+0

Figure 6.18 A three-level edit graph for alignment with affine gap penalties. Every
vertex (i, j) in the middle level has one outgoing edge to the upper level, one outgo-
ing edge to the lower level, and one incoming edge each from the upper and lower
levels.



6.10 Multiple Alignment 187



188 6 Dynamic Programming Algorithms

--T--CC-C-AGT--TATGT-CAGGGGACACG--A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT--C
||||| | X|||| | || XXX||| | ||| | |

-ATTGC-G--ATTCGTAT------GGGACA-TGGATGCATGCAG-TGAC

Figure 6.19 Multiple alignment of three sequences.

blance even when the sequences share only weak similarities.12 If sequence

similarity is weak, pairwise alignment can fail to identify biologically related

sequences because weak pairwise similarities may fail statistical tests for

significance. However, simultaneous comparison of many sequences often

allows one to find similarities that are invisible in pairwise sequence com-

parison.

Let v1, . . . ,vk be k strings of length n1, . . . , nk over an alphabet A. Let A′

denote the extended alphabet A
⋃

{−}, where ‘−’ denotes the space char-

acter (reserved for insertions and deletions). A multiple alignment of strings

v1, . . . ,vk is specified by a k × n matrix A, where n ≥ max1≤i≤k ni. Each

element of the matrix is a member of A′, and each row i contains the char-

acters of vi in order, interspersed with n − ni spaces (figure 6.19). We also

assume that every column of the multiple alignment matrix contains at least

one symbol fromA, that is, no column in a multiple alignment contains only

spaces. The multiple alignment matrix we have constructed is a generaliza-

tion of the pairwise alignment matrix to k > 2 sequences. The score of a

multiple alignment is defined to be the sum of scores of the columns, with

the optimal alignment being the one that maximizes the score. Just as it was

in section 4.5, the consensus of an alignment is a string of the most common

characters in each column of the multiple alignment. At this point, we will

use a very general scoring function that is defined by a k-dimensional matrix

δ of size |A′|× . . .×|A′| that describes the scores of all possible combinations

of k symbols fromA′.13

A straightforward dynamic programming algorithm in the k-dimensional

edit graph formed from k strings solves the Multiple Alignment problem.

12. Sequences that code for proteins that perform the same function are likely to be somehow
related but it may be difficult to decide whether this similarity is significant or happens just by
chance.
13. This is a k-dimensional scoring matrix rather than the two-dimensional |A′| × |A′| matrix
for pairwise alignment (which is a multiple alignment with k = 2).



6.10 Multiple Alignment 189

For example, suppose that we have three sequences u, v, and w, and that we

want to find the “best” alignment of all three. Every multiple alignment of

three sequences corresponds to a path in the three-dimensional Manhattan-

like edit graph. In this case, one can apply the same logic as we did for

two dimensions to arrive at a dynamic programming recurrence, this time

with more terms to consider. To get to vertex (i, j, k) in a three-dimensional

edit graph, you could come from any of the following predecessors (note

that δ(x, y, z) denotes the score of a column with letters x, y, and z, as in

figure 6.20):

1. (i− 1, j, k) for score δ(ui,−,−)

2. (i, j − 1, k) for score δ(−, vj ,−)

3. (i, j, k − 1) for score δ(−,−, wk)

4. (i− 1, j − 1, k) for score δ(ui, vj ,−)

5. (i− 1, j, k − 1) for score δ(ui,−, wk)

6. (i, j − 1, k − 1) for score δ(−, vj , wk)

7. (i− 1, j − 1, k − 1) for score δ(ui, vj , wk)

We create a three-dimensional dynamic programming array s and it is easy

to see that the recurrence for si,j,k in the three-dimensional case is similar to

the recurrence in the two-dimensional case (fig. 6.21). Namely,

si,j,k = max











































si−1,j,k +δ(vi,−,−)

si,j−1,k +δ(−, wj ,−)

si,j,k−1 +δ(−,−, uk)

si−1,j−1,k +δ(vi, wj ,−)

si−1,j,k−1 +δ(vi,−, uk)

si,j−1,k−1 +δ(−, wj , uk)

si−1,j−1,k−1 +δ(vi, wj , uk)

Unfortunately, in the case of k sequences, the running time of this ap-

proach is O((2n)k), so some improvements of the exact algorithm, and many

heuristics for suboptimal multiple alignments, have been proposed. A good

heuristic would be to compute all
(

k
2

)

optimal pairwise alignments between

every pair of strings and then combine them together in such a way that pair-

wise alignments induced by the multiple alignment are close to the optimal



190 6 Dynamic Programming Algorithms

A T G C -

-

C

G

T

A

A
T

G
C

-

Figure 6.20 The scoring matrix, δ, used in a three-sequence alignment.

(i, j, k)

(i, j, k − 1)

(i, j − 1, k)

(i− 1, j − 1, k)

(i− 1, j − 1, k − 1)

(i− 1, j, k)

(i− 1, j, k − 1)

(i, j − 1, k − 1)

Figure 6.21 A cell in the alignment graph between three sequences.



6.10 Multiple Alignment 191

ones. Unfortunately, it is not always possible to combine optimal pairwise

alignments into a multiple alignment since some pairwise alignments may be

incompatible. For example, figure 6.22 (a) shows three sequences whose opti-

mal pairwise alignment can be combined into a multiple alignment, whereas

(b) shows three sequences that cannot be combined. As a result, some mul-

tiple alignment algorithms attempt to combine some compatible subset of

optimal pairwise alignments into a multiple alignment.

Another approach to do this uses one particularly strong pairwise align-

ment as a building block for the multiple k-way alignment, and iteratively

adds one string to the growing multiple alignment. This greedy progressive

multiple alignment heuristic selects the pair of strings with greatest similarity

and merges them together into a new string following the principle “once a

gap, always a gap.”14 As a result, the multiple alignment of k sequences is

reduced to the multiple alignment of k−1 sequences. The motivation for the

choice of the closest strings at the early steps of the algorithm is that close

strings often provide the most reliable information about a real alignment.

Many popular iterative multiple alignment algorithms, including the tool

CLUSTAL, use similar strategies.

Although progressive multiple alignment algorithms work well for very

close sequences, there are no performance guarantees for this approach. The

problem with progressive multiple alignment algorithms like CLUSTAL is

that they may be misled by some spuriously strong pairwise alignment, in

effect, a bad seed. If the very first two sequences picked for building multiple

alignment are aligned in a way that is incompatible with the optimal multiple

alignment, the error in this initial pairwise alignment will propagate all the

way through to the whole multiple alignment. Many multiple alignment

algorithms have been proposed, and even with systematic deficiencies such

as the above they remain quite useful in computational biology.

We have described multiple alignment for k sequences as a generalization

of the Pairwise Alignment problem, which assumed the existence of a k-

dimensional scoring matrix δ. Since such k-dimensional scoring matrices are

not very practical, we briefly describe two other scoring approaches that are

more biologically relevant. The choice of the scoring function can drastically

affect the quality of the resulting alignment, and no single scoring approach

is perfect in all circumstances.

The columns of a multiple alignment of k sequences describe a path of

14. Essentially, this principle states that once a gap has been introduced into the alignment it
will never close, even if that would lead to a better overall score.



192 6 Dynamic Programming Algorithms

TTTTGGGG AAAAGGGG

AAAATTTT

AAAATTTT----
----TTTTGGGG

AAAA----GGGG
----TTTTGGGG

AAAATTTT----
AAAA----GGGG----TTTTGGGG

AAAATTTT----
AAAA----GGGG

(a) Compatible pairwise alignments

TTTTGGGG GGGGAAAA

AAAATTTT

AAAATTTT----
----TTTTGGGG

----GGGGAAAA
TTTTGGGG----

----AAAATTTT
GGGGAAAA----

?

(b) Incompatible pairwise alignments

Figure 6.22 Given three sequences, it might be possible to combine their pairwise
alignment into a multiple alignment (a), but it might not be (b).


