
CMSC 423: Project #2: Finding Several Good Local Alignments

Due: Tuesday, December 8th at 11:59pm.

In this second project, you will implement local alignment with a�ne gaps along with a scheme for finding
several good alignments, not just the best. The project will be done in groups of 2 — these groups can be
di↵erent from those in part 1. Some of your grade for the project will be based on a confidential survey
completed by your partner.

Format of the command: Your program will be run using the following command:

java multilocal.jar score.matrix in.fasta out.fasta k

where k is an integer that gives the desired number of alignments. Your program must compile on the submit
server. It should output into out.fasta the k best local alignments of the two sequences in in.fasta (see
below).

Format of input: The format of the score.matrix file will be the same as in Project #1. The format of
the in.fasta file is the same as in Project #1 as well, except that it can contain only 2 sequences. You
should handle errors the same way as in Project #1 as well.

Format of the output: You will find k local alignments (where k is given as the last parameter on the
command line). The output file will be in the same multi-FASTA format as in Project #1. The output file
should contain 2k sequences, where sequences 1 and 2 give the best local alignment, sequences 3 and 4 give
the second best local alignment, and so on.

Algorithm to find the top-k di↵erent local alignments: A particular local alignment can be specified
by the edges that it uses during the traceback. Two local alignments are said to be disjoint if they do not
use any of the same edges. Your algorithm should output the best alignment, and then repeatedly output
the next best alignment that is disjoint from all the alignments output so far, stopping when a total of k
alignments (including the best) have been output.

A simple way to do this is the following algorithm:

ForbiddenEdges = []

For i = 1 .. k:

Fill in the dynamic programming matrix, disallowing the use of any ForbiddenEdges

Traceback, adding every visited edge to ForbiddenEdges

In other words, we recompute the dynamic programming matrix k times, but when we fill in a cell, we don’t
consider any options in the recurrence that would cause us to use a previously used edge. This runs in time
O(knmf), where the length of the sequences are n and m and f is some function that accounts for the time
spent searching the ForbiddenEdges list when filling in the matrix.

Grading: There are faster ways of finding the top-k alignments than the simple algorithm above. 20%
of your grade will be based on the speed of your algorithm and implementation. You should submit,
along with your code, a short document (PDF or plain text file) named README.txt or
README.pdf that describes your approach to solving the problem, why it is correct, and its
advantages and disadvantages.

Code Reuse: You can reuse any of the code your team wrote for Project #1 and you can use the code that
will be posted on the website. You cannot use anyone else’s Project #1 code.

Submission: You will submit using the CS submit server: submit.cs.umd.edu. There will be no tests on
the submission server — it is used only for timestamping.


