
11.3 Decoding Algorithm 393

For convenience, we have introduced π0 and πn+1 as the fictitious initial

and terminal states begin and end.

This model defines the probability P (x|π) for a given sequence x and a

given path π. Since only the dealer knows the real sequence of states π that

emitted x, we say that π is hidden and attempt to solve the following Decod-

ing problem:

Decoding Problem:

Find an optimal hidden path of states given observations.

Input: Sequence of observations x = x1 . . . xn generated by

an HMMM(
∑

, Q, A, E).

Output: A path that maximizes P (x|π) over all possible

paths π.

The Decoding problem is an improved formulation of the ill-defined Fair

Bet Casino problem.

11.3 Decoding Algorithm

In 1967 Andrew Viterbi used an HMM-inspired analog of the Manhattan grid

for the Decoding problem, and described an efficient dynamic programming

algorithm for its solution. Viterbi’s Manhattan is shown in figure 11.2 with

every choice of π1, . . . , πn corresponding to a path in this graph. One can

set the edge weights in this graph so that the product of the edge weights for

path π=π1 . . . πn equals P (x|π). There are |Q|2(n−1) edges in this graph with

the weight of an edge from (k, i) to (l, i + 1) given by el(xi+1) · akl. Unlike

the alignment approaches covered in chapter 6 where the set of valid direc-

tions was restricted to south, east, and southeast edges, the Manhattan built

to solve the decoding problem only forces the tourists to move in any east-

ward direction (e.g., northeast, east, southeast, etc.), and places no additional

restrictions (fig. 11.3). To see why the length of the edge between the vertices

(k, i) and (l, i + 1) in the corresponding graph is given by el(xi+1) · akl, one

should compare pk,i [the probability of a path ending in vertex (k, i)] with

394 11 Hidden Markov Models

the probability

pl,i+1 =

i+1
∏

j=1

eπj
(xj) · aπj−1,πj

=

i
∏

j=1

eπj
(xj) · aπj−1,πj

 · (eπi+1(xi+1) · aπi,πi+1)

= pk,i · el(xi+1) · akl

= pk,i ·weight of edge from (k, i) to (l, i + 1)

Therefore, the decoding problem is reduced to finding a longest path in the

directed acyclic graph (DAG) shown in figure 11.2, which poses no problems

to the algorithm presented in chapter 6. We remark that, in this case, the

length of the path is defined as the product of its edges’ weights, rather than

the sum of weights used in previous examples of dynamic programming

algorithms, but the application of logarithms makes the problems the same.

The idea behind the Viterbi algorithm is that the optimal path for the (i+1)-

prefix x1 . . . xi+1 of x uses a path for x1 x2 · · ·xi that is optimal among the

paths ending in some unknown state πi. Let k be some state from Q, and let

i be between 1 and n. Define sk,i to be the probability of the most likely path

for the prefix x1 . . . xi that ends at state k. Then, for any state l,

sl,i+1 = max
k∈Q
{sk,i · weight of edge between (k, i) and (l, i + 1) }

= max
k∈Q
{sk,i · akl · el(xi+1)}

= el(xi+1) ·max
k∈Q
{sk,i · akl}

We initialize sbegin,0 = 1 and sk,0 = 0 for k 6= begin. If π∗ is an optimal

path, then the value of P (x|π∗) is

P (x|π∗) = max
k∈Q
{sk,n · ak,end}

As in chapter 6, these recurrence relations and the initial conditions deter-

mine the entire dynamic programming algorithm, so we do not provide

pseudocode here.

The Viterbi algorithm runs in O(n|Q|2) time. The computations in the

Viterbi algorithm are usually done using logarithmic scores Sk,i = log sk,i

11.3 Decoding Algorithm 395

|Q
|

st
at

es

n columns

Figure 11.2 Manhattan, according to Viterbi, consists of |Q| rows, n columns, and
|Q|2 edges per layer (|Q| = 4 and n = 6 in the example above).

to avoid overflow6:

Sl,i+1 = log el(xi+1) + max
k∈Q
{Sk,i + log(akl)}.

As we showed above, every path π through the graph in figure 11.2 has

probability P (x|π). The Viterbi algorithm is essentially a search through the

space of all possible paths in that graph for the one that maximizes the value

of P (x|π).

We can also ask a slightly different question: given x and the HMM, what

is the probability P (πi = k|x) that the HMM was in state k at time i? In the

casino analogy, we are given a sequence of coin tosses and are interested in

the probability that the dealer was using a biased coin at a particular time.

We define P (x) =
∑

π P (x|π) as the sum of probabilities of all paths and

P (x, πi = k) =
∑

all π with πi = k P (x|π) as the sum of probabilities of all

6. Overflow occurs in real computers because there are only a finite number of bits (binary
digits) in which to hold a number.

396 11 Hidden Markov Models

(a) (b)

Figure 11.3 The set of valid directions in the alignment problem (a) is usually lim-
ited to south, east, and southeast edges, while the set of valid directions in the decod-
ing problem (b) includes any eastbound edge.

paths with πi = k. The ratio P (x,πi=k)
P (x) defines the probability P (πi = k|x)

that we are trying to compute.

A simple variation of the Viterbi algorithm allows us to compute the prob-

ability P (x, πi = k). Let fk,i be the probability of emitting the prefix x1 . . . xi

and reaching the state πi = k. It can be expressed as follows.

fk,i = ek(xi) ·
∑

l∈Q

fl,i−1 · alk

The only difference between the forward algorithm that calculates fk,i and the

Viterbi algorithm is that the “max” sign in the Viterbi algorithm changes into

a “
∑

” sign in the forward algorithm.

However, forward probability fk,i is not the only factor affecting P (πi =

k|x). The sequence of transitions and emissions that the HMM undergoes

between πi+1 and πn also affects P (πi = k|x). The backward probability bk,i

is defined as the probability of being at state πi = k and emitting the suffix

11.4 HMM Parameter Estimation 397

xi+1 . . . xn. The backward algorithm uses a similar recurrence:

bk,i =
∑

l∈Q

el(xi+1) · bl,i+1 · akl

Finally, the probability that the dealer had a biased coin at moment i is given

by

P (πi = k|x) =
P (x, πi = k)

P (x)
=

fk(i) · bk(i)

P (x)
.

11.4 HMM Parameter Estimation

The preceding analysis assumed that we know the state transition and emis-

sion probabilities of the HMM. Given these parameters, it is easy for an in-

telligent gambler to figure out that the dealer in the Fair Bet Casino is using a

biased coin, simply by noticing that 0 and 1 have different expected frequen-

cies (3
8 vs 5

8). If the ratio of zeros to ones in a daylong sequence of tosses is

suspiciously low, then it is likely that the dealer is using a biased coin. Un-

fortunately, the most difficult problem in the application of HMMs is that the

HMM parameters are usually unknown and therefore need to be estimated

from data. It is more difficult to estimate the transition and emission prob-

abilities of an HMM than it is to reconstruct the most probable sequence of

states it went through when you do know the probabilities. In this case, we

are given the set of states, Q, but we do not know with what probability the

HMM moves from one state to another, or with what probability it emits any

particular symbol.

Let Θ be a vector combining the unknown transition and emission proba-

bilities of the HMMM. Given an observed symbol string x that the HMM

emitted, define P (x|Θ) as the maximum probability of x given the assign-

ment of parameters Θ. Our goal is to find

max
Θ

P (x|Θ).

Usually, instead of a single string x, we can obtain a sample of training se-

quences x1, . . . , xm, so a natural goal is to find

max
Θ

m
∏

j=1

P (xj |Θ).

398 11 Hidden Markov Models

This results in a difficult optimization problem in the multidimensional pa-

rameter space Θ. Commonly used algorithms for this type of parameter op-

timization are heuristics that use local improvement strategies. If we know

the path π1 . . . πn corresponding to the observed states x1 . . . xn, then we can

scan the sequences and compute empirical estimates for transition and emis-

sion probabilities. If Akl is the number of transitions from state k to l and

Ek(b) is the number of times b is emitted from state k, then the reasonable

estimators are

akl =
Akl

∑

q∈Q Akq

ek(b) =
Ek(b)

∑

σ∈
P Ek(σ)

.

However, we do not usually know the state sequence π = π1 . . . πn, and

in this case we can start from a wild guess for π1 . . . πn, compute empirical

estimates for transition and emission probabilities using this guess, and solve

the decoding problem to find a new, hopefully less wild, estimate for π. The

commonly used iterative local improvement strategy, called the Baum-Welch

algorithm, uses a similar approach to estimate HMM parameters.

11.5 Profile HMM Alignment

Given a family of functionally related biological sequences, one can search

for new members of the family from a database using pairwise alignments

between family members and sequences from the database. However, this

approach may fail to identify distantly related sequences because distant

cousins may have weak similarities that do not pass the statistical signifi-

cance test. However, if the sequence has weak similarities with many family

members, it is likely to belong to the family. The problem then is to somehow

align a sequence to all members of the family at once, using the whole set of

functionally related sequences in the search.

The simplest representation of a family of related proteins is given by their

multiple alignment and the corresponding profile.7 As with sequences, pro-

files can also be compared and aligned against each other since the dynamic

programming algorithm for aligning two sequences works if both of the in-

put sequences are profiles.

7. While in chapter 4 we defined profile element pij as a count of the nucleotide i in the jth
column of alignment matrix, biologists usually define pij as frequency of the nucleotide i in the
jth column of the alignment matrix, that is, they divide all of the counts by t (see figure 11.4). In
order to avoid columns that contain one or more letters with probabilities of 0, small numbers

