
11 Hidden Markov Models

Hidden Markov Models are a popular machine learning approach in bioinfor-

matics. Machine learning algorithms are presented with training data, which

are used to derive important insights about the (often hidden) parameters.

Once an algorithm has been suitably trained, it can apply these insights to

the analysis of a test sample. As the amount of training data increases, the ac-

curacy of the machine learning algorithm typically increases as well. The pa-

rameters that are learned during training represent knowledge; application

of the algorithm with those parameters to new data (not used in the train-

ing phase) represents the algorithm’s use of that knowledge. The Hidden

Markov Model (HMM) approach, considered in this chapter, learns some

unknown probabilistic parameters from training samples and uses these pa-

rameters in the framework of dynamic programming (and other algorithmic

techniques) to find the best explanation for the experimental data.

11.1 CG-Islands and the “Fair Bet Casino”

The least frequent dinucleotide in many genomes is CG. The reason for this

is that the C within CG is easily methylated, and the resulting methyl-C has

a tendency to mutate into T.1 However, the methylation is often suppressed

around genes in areas called CG-islands in which CG appears relatively fre-

quently. An important problem is to define and locate CG-islands in a long

genomic text.

Finding CG-islands can be modeled after the following toy gambling prob-

lem. The “Fair Bet Casino” has a game in which a dealer flips a coin and

1. Cells often biochemically modify DNA and proteins. Methylation is the most common DNA
modification and results in the addition of a methyl (CH3) group to a nucleotide position in
DNA.
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the player bets on the outcome (heads or tails). The dealer in this (crooked)

casino uses either a fair coin (heads or tails are equally likely) or a biased

coin that will give heads with a probability of 3
4 . For security reasons, the

dealer does not like to change coins, so this happens relatively rarely, with a

probability of 0.1. Given a sequence of coin tosses, the problem is to find out

when the dealer used the biased coin and when he used the fair coin, since

this will help you, the player, learn the dealer’s psychology and enable you

to win money. Obviously, if you observe a long line of heads, it is likely that

the dealer used the biased coin, whereas if you see an even distribution of

heads and tails, he likely used the fair one. Though you can never be certain

that a long string of heads is not just a fluke, you are primarily interested in

the most probable explanation of the data. Based on this sensible intuition,

we might formulate the problem as follows:

Fair Bet Casino Problem:

Given a sequence of coin tosses, determine when the dealer used a fair

coin and when he used a biased coin.

Input: A sequence x = x1 x2 x3 . . . xn of coin tosses (either

H or T ) made by two possible coins (F or B).

Output: A sequence π = π1 π2 π3 · · ·πn, with each πi being

either F or B indicating that xi is the result of tossing the

fair or biased coin, respectively.

Unfortunately, this problem formulation simply makes no sense. The am-

biguity is that any sequence of coins could possibly have generated the ob-

served outcomes, so technically π = FFF . . . FF is a valid answer to this

problem for every observed sequence of coin flips, as is π = BBB . . .BB. We

need to incorporate a way to grade different coin sequences as being better

answers than others. Below we explain how to turn this ill-defined problem

into the Decoding problem based on HMM paradigm.

First, we consider the problem under the assumption that the dealer never

changes coins. In this case, letting 0 denote tails and 1 heads, the question is

which of the two coins he used, fair (p+(0) = p+(1) = 1
2 ) or biased (p−(0) =

1
4 , p−(1) = 3

4 ). If the resulting sequence of tosses is x = x1 . . . xn, then the



11.1 CG-Islands and the “Fair Bet Casino” 389

probability that x was generated by a fair coin is2

P (x|fair coin) =
n
∏

i=1

p+(xi) =
1

2n
.

On the other hand, the probability that x was generated by a biased coin is

P (x|biased coin) =

n
∏

i=1

p−(xi) =

(

1

4n−k

)(

3k

4k

)

=
3k

4n
.

Here k is the number of heads in x. If P (x|fair coin) > P (x|biased coin), then

the dealer most likely used a fair coin; on the other hand, we can see that if

P (x|fair coin)<P (x|biased coin), then the dealer most likely used a biased

coin. The probabilities P (x|fair coin)= 1
2n and P (x|biased coin) = 3k

4n become

equal at k = n
log2 3 . As a result, when k < n

log2 3 , the dealer most likely used

a fair coin, and when k > n
log2 3 , he most likely used a biased coin. We can

define the log-odds ratio as follows:

log2

P (x|fair coin)

P (x|biased coin)
=

k
∑

i=1

log2

p+(xi)

p−(xi)
= n− k log2 3

However, we know that the dealer does change coins, albeit rarely. One ap-

proach to making an educated guess as to which coin the dealer used at each

point would be to slide a window of some width along the sequence of coin

flips and calculate the log-odds ratio of the sequence under each window. In

effect, this is considering the log-odds ratio of short regions of the sequence.

If the log-odds ratio of the short sequence falls below 0, then the dealer most

likely used a biased coin while generating this window of sequence; other-

wise the dealer most likely used a fair coin.

Similarly, a naive approach to finding CG-islands in long DNA sequences

is to calculate log-odds ratios for a sliding window of some particular length,

and to declare windows that receive positive scores to be potential CG-islands.

Of course, the disadvantage of this approach is that we do not know the

length of CG-islands in advance and that some overlapping windows may

classify the same nucleotide differently. HMMs represent a different proba-

bilistic approach to this problem.

2. The notation P (x|y) is shorthand for the “probability of x occurring under the assumption
that (some condition) y is true.” The notation

Qn
i=1 ai means a1 · a2 · a3 · · · an.



390 11 Hidden Markov Models

11.2 The Fair Bet Casino and Hidden Markov Models

An HMM can be viewed as an abstract machine that has an ability to produce

some output using coin tossing. The operation of the machine proceeds in

discrete steps: at the beginning of each step, the machine is in a hidden state of

which there are k. During the step, the HMM makes two decisions: (1) “What

state will I move to next?” and (2) “What symbol—from an alphabet Σ—will

I emit?” The HMM decides on the former by choosing randomly among the k

states; it decides on the latter by choosing randomly among the |Σ| symbols.

The choices that the HMM makes are typically biased, and may follow arbi-

trary probabilities. Moreover, the probability distributions3 that govern which

state to move to and which symbols to emit change from state to state. In

essence, if there are k states, then there are k different “next state” distribu-

tions and k different “symbol emission” distributions. An important feature

of HMMs is that an observer can see the emitted symbols but has no ability to

see what state HMM is in at any step, hence the name Hidden Markov Mod-

els. The goal of the observer is to infer the most likely states of the HMM by

analyzing the sequences of emitted symbols. Since an HMM effectively uses

dice to emit symbols, the sequence of symbols it produces does not form any

readily recognizable pattern.

Formally, an HMM M is defined by an alphabet of emitted symbols Σ,

a set of (hidden) states Q, a matrix of state transition probabilities A, and a

matrix of emission probabilities E, where

• Σ is an alphabet of symbols;

• Q is a set of states, each of which will emit symbols from the alphabet Σ;

• A = (akl) is a |Q| × |Q| matrix describing the probability of changing to

state l after the HMM is in state k; and

• E = (ek(b)) is a |Q| × |Σ|matrix describing the probability of emitting the

symbol b during a step in which the HMM is in state k.

Each row of the matrix A describes a “state die”4 with |Q| sides, while

each row of the matrix E describes a “symbol die” with |Σ| sides. The Fair

3. A probability distribution is simply an assignment of probabilities to outcomes; in this case,
the outcomes are either symbols to emit or states to move to. We have seen probability distribu-
tions, in a disguised form, in the context of motif finding. Every column of a profile, when each
element is divided by the number of sequences in the sample, forms probability distributions.
4. Singular of “dice.”
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Figure 11.1 The HMM designed for the Fair Bet Casino problem. There are two
states: F (fair) and B (biased). From each state, the HMM can emit either heads (H)
or tails (T), with the probabilities shown. The HMM will switch between F and B
with probability 1/10.

Bet Casino process corresponds to the following HMMM(Σ, Q, A, E) shown

in figure 11.1:

• Σ = {0, 1}, corresponding to tails (0) or heads (1)

• Q = {F, B}, corresponding to a fair (F ) or biased (B) coin

• aFF = aBB = 0.9, aFB = aBF = 0.1

• eF (0) = 1
2 , eF (1) = 1

2 , eB(0) = 1
4 , eB(1) = 3

4

A path π = π1 . . . πn in the HMMM is a sequence of states. For example, if

a dealer used the fair coin for the first three and the last three tosses and the

biased coin for five tosses in between, the corresponding path π would be

π = FFFBBBBBFFF. If the resulting sequence of tosses is 01011101001, then

the following shows the matching of x to π and the probability of xi being

generated by πi at each flip:

x

π

P (xi|πi)
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We write P (xi|πi) to denote the probability that symbol xi was emitted

from state πi—these values are given by the matrix E. We write P (πi → πi+1)
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to denote the probability of the transition from state πi to πi+1—these values

are given by the matrix A.

The path π = FFFBBBBBFFF includes only two switches of coins, first from

F to B (after the third step), and second from B to F (after the eighth step).

The probability of these two switches, π3 → π4 and π8 → π9, is 1
10 , while the

probability of all other transitions, πi−1 → πi, is 9
10 as shown below:5

x

π
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The probability of generating x through the path π (assuming for simplic-

ity that in the first moment the dealer is equally likely to have a fair or a

biased coin) is roughly 2.66× 10−6 and is computed as:
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In the above example, we assumed that we knew π and observed x. How-

ever, in reality we do not have access to π. If you only observe that x =

01011101001, then you might ask yourself whether or not π =FFFBBBBBFFF

is the “best” explanation for x. Furthermore, if it is not the best explanation,

is it possible to reconstruct the best one? It turns out that FFFBBBBBFFF is

not the most probable path for x = 01011101001: FFFBBBFFFFF is slightly

better, with probability 3.54× 10−6.
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The probability that sequence x was generated by the path π, given the

modelM, is

P (x|π) = P (π0 → π1)·
n
∏

i=1

P (xi|πi)P (πi → πi+1) = aπ0,π1 ·
n
∏

i=1

eπi
(xi)·aπi,πi+1 .

5. We have added a fictitious term, P (π0 → π1) = 1
2

to model the initial condition: the dealer
is equally likely to have either a fair or a biased coin before the first flip.
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For convenience, we have introduced π0 and πn+1 as the fictitious initial

and terminal states begin and end.

This model defines the probability P (x|π) for a given sequence x and a

given path π. Since only the dealer knows the real sequence of states π that

emitted x, we say that π is hidden and attempt to solve the following Decod-

ing problem:

Decoding Problem:

Find an optimal hidden path of states given observations.

Input: Sequence of observations x = x1 . . . xn generated by

an HMMM(
∑

, Q, A, E).

Output: A path that maximizes P (x|π) over all possible

paths π.

The Decoding problem is an improved formulation of the ill-defined Fair

Bet Casino problem.

11.3 Decoding Algorithm

In 1967 Andrew Viterbi used an HMM-inspired analog of the Manhattan grid

for the Decoding problem, and described an efficient dynamic programming

algorithm for its solution. Viterbi’s Manhattan is shown in figure 11.2 with

every choice of π1, . . . , πn corresponding to a path in this graph. One can

set the edge weights in this graph so that the product of the edge weights for

path π=π1 . . . πn equals P (x|π). There are |Q|2(n−1) edges in this graph with

the weight of an edge from (k, i) to (l, i + 1) given by el(xi+1) · akl. Unlike

the alignment approaches covered in chapter 6 where the set of valid direc-

tions was restricted to south, east, and southeast edges, the Manhattan built

to solve the decoding problem only forces the tourists to move in any east-

ward direction (e.g., northeast, east, southeast, etc.), and places no additional

restrictions (fig. 11.3). To see why the length of the edge between the vertices

(k, i) and (l, i + 1) in the corresponding graph is given by el(xi+1) · akl, one

should compare pk,i [the probability of a path ending in vertex (k, i)] with


