
Suffix Arrays
CMSC 423

Suffix Arrays

• Even though Suffix Trees are O(n) space, the constant hidden by the
big-Oh notation is somewhat “big”: ≈ 20 bytes / character in good
implementations.

• If you have a 10Gb genome, 20 bytes / character = 200Gb to store
your suffix tree. “Linear” but large.

• Suffix arrays are a more efficient way to store the suffixes that can do
most of what suffix trees can do, but just a bit slower.

• Slight space vs. time tradeoff.

Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = attcatg$

attcatg$
ttcatg$
tcatg$
catg$
atg$
tg$
g$
$

1
2
3
4
5
6
7
8

$
atg$
attcatg$
catg$
g$
tcatg$
tg$
ttcatg$

8
5
1
4
7
3
6
2

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = attcatg$

attcatg$
ttcatg$
tcatg$
catg$
atg$
tg$
g$
$

1
2
3
4
5
6
7
8

8
5
1
4
7
3
6
2

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Another Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = cattcat$

cattcat$
attcat$
ttcat$
tcat$
cat$
at$
t$
$

1
2
3
4
5
6
7
8

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Another Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = cattcat$

cattcat$
attcat$
ttcat$
tcat$
cat$
at$
t$
$

1
2
3
4
5
6
7
8

8
6
2
5
1
7
4
3

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Search via Suffix Arrays

• Does string “at” occur in s?

• Binary search to find “at”.

• What about “tt”?

s = cattcat$

8
6
2
5
1
7
4
3

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

√

Counting via Suffix Arrays

• How many times does “at”
occur in the string?

• All the suffixes that start with
“at” will be next to each other
in the array.

• Find one suffix that starts with
“at” (using binary search).

• Then count the neighboring
sequences that start with at.

s = cattcat$

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

K-mer counting
Problem: Given a string s, an integer k, output all pairs (b, i) such
that b is a length-k substring of s that occurs exactly i times.

1. Build a suffix array.

2. Walk down the suffix array, keeping a
CurrentCount count

If the current suffix has length < k, skip it

If the current suffix starts with the same
length-k string as the previous suffix:

increment CurrentCount
else

output CurrentCount and previous
length-k suffix
CurrentCount := 1

Output CurrentCount & length-k suffix.

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

k = 2
CurrentCount

1
1
2
1 (at,2)
2
1 (ca,2)
1 (t$,1)
1 (tc,1)
1 (tt,1)

Constructing Suffix Arrays

• Easy O(n2 log n) algorithm:

sort the n suffixes, which takes O(n log n) comparisons,
where each comparison takes O(n).

• There are several direct O(n) algorithms for constructing suffix
arrays that use very little space.

• The Skew Algorithm is one that is based on divide-and-conquer.

• An simple O(n) algorithm: build the suffix tree, and exploit the
relationship between suffix trees and suffix arrays (next slide)

Relationship Between
Suffix Trees & Suffix Arrays

Red #s = starting position of the
suffix ending at that leaf

Edges leaving each node are
sorted by label (left-to-right).

$

∑ = {$,a,c,t}

at cat

t

cat$$
tcat$

$ tcat$
$ tcat$

cattcat$
12345678

8

s =

6 2
5 1

7 4

3

Leaf labels left to right: 86251743

Relationship Between
Suffix Trees & Suffix Arrays

Red #s = starting position of the
suffix ending at that leaf

Edges leaving each node are
sorted by label (left-to-right).

$

∑ = {$,a,c,t}

at cat

t

cat$$
tcat$

$ tcat$
$ tcat$

cattcat$
12345678

8

s =

6 2
5 1

7 4

3

Leaf labels left to right: 86251743

s = cattcat$

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

Recap

• Suffix arrays can be used to search and count substrings.

• Construction:

• Easily constructed in O(n2 log n)

• Simple algorithms to construct them in O(n) time using
possibly O(n2) space.

• More complicated algorithms to construct them in O(n) time
using at most O(n) space.

• More space efficient than suffix trees: just storing the original
string + a list of integers.

