## Multiple Sequence Alignment CMSC 423

## Multiple Sequence Alignment

| F0034 | CAATATACA | CCCTCTC | ACCATCGGGG                | AA <mark>TG</mark> CCCCA  | AA <mark>TATGT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTCA</mark> G | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | GAG                 | A <mark>GAAG</mark> AAAAAA  | AGAGGATTATI | TGGAGCTAT | AGCAGG  |
|-------|-----------|---------|---------------------------|---------------------------|----------------------------|------------------------|-----------|-----------|-------------------------|--------------------------|------------------------|---------------------|-----------------------------|-------------|-----------|---------|
| F0020 | CAATATACA | CCCTCTC | ACCATCGGGG                | AA <mark>TG</mark> CCCCA/ | AA <mark>TATGT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT(  | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | G <mark>A</mark> G/ | A <mark>GAAG</mark> AAAAAA  | AGAGGATTATI | TGGAGCTAT | AGCAGG  |
| F0021 | CAATATAC  | CCCTCTC | ACCATCGGGG                | AA <mark>TG</mark> CCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT ( | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | G <mark>A</mark> G/ | A <mark>GAAGGAAAAA</mark> G | AGAGGATTAT  | TGGAGCTAT | AGCAGG  |
| F0014 | CAATATACA | CCCTCTC | ACCATCGGGG                | AA <mark>TG</mark> CCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI |           | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | GAG/                | A <mark>GAAG</mark> AAAAAAG | AGAGGATTAT  | TGGAGCTAT | AGCAGG  |
| F0030 | CAATATAC  | CCCTCTC | ACCATCGGGG                | AA <mark>TG</mark> CCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | GAG/                | A <mark>GAAG</mark> AAAAAA  | AGAGGATTAT  | TGGAGCTAT | AGCAGG  |
| F0005 | CAATATAC  | CCCTCTC | ACCATCGGGG                | AA <mark>TG</mark> CCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | G <mark>A</mark> G/ | A <mark>GAAG</mark> AAAAAA  | AGAGGATTAT  | TGGAGCTAT | AGCAGG  |
| F0007 | CAATATACA | CCCTCTC | ACTATCGGGG                | AA <mark>TG</mark> CCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI |           | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | GAG/                | A <mark>GAAG</mark> AAAAAAG | AGAGGATTAT  | TGGAGCTAT | AGCAGG  |
| F0010 | CAATATACA | CCCTCTC | ACTATCGGGG                | AA <mark>TG</mark> CCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | GAG/                | A <mark>GAAG</mark> AAAAAAG | AGAGGATTAT  | TGGAGCTAT | AGCAGG  |
| F0032 | CAATATACA | CCCTCTC | ACTATCGGGG                | AA <mark>T</mark> GCCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAAGA | GAG/                | A <mark>GAAG</mark> AAAAAA  | AGAGGATTAT  | TGGAGCTAT | AGCAGG  |
| F0024 | CAACATCC  | CCCTCTC | ACCATCGGGG                | AA <mark>T</mark> GCCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAATAGCCC                | TC AAGGA               | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0012 | CAACATCC/ | CCCTCTC | ACCATC GGGG               | AA <mark>TG</mark> CCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAAAA                | ATTAGTCCI | TGCTACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | TC AAGGA               | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0009 | CAACATCC  | CCCTCTC | ACCATT GGGG               | AA <mark>T</mark> GCCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCTACT   | GGG <mark>CT</mark> CAG | AAA <mark>T</mark> AGCCC | TC AAGGA               | GAGAGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0006 | CAACATCC/ | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>T</mark> GCCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCTACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAGGA | GAGAGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0008 | CAACATCC/ | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>TG</mark> CCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAO               | ATTAGTCCI | TGCTACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAGGA | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0013 | CAACATCC/ | CCCTCTC | ACCATCGGGG                | AA <mark>T</mark> GCCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAO               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAATAGCCC                | T <mark>C</mark> AAGGA | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0004 | CAACATCC/ | CCCTCTC | ACCATC GGGG               | AA <mark>TG</mark> CCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAGGA | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGC AGG |
| F0027 | CAACATCC  | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>T</mark> GCCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | GTTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAATAGCCC                | TC AAGGA               | GAGGGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0019 | CAACATCC  | CCCTCTC | ACCATCGGGG                | AA <mark>T</mark> GCCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAATAGCCC                | TC AAGGA               | GAGGGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0033 | CAACATCC  | CCCTCTC | ACCATCGGGG                | AA <mark>TGT</mark> CCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAATAGCCC                | T <mark>C</mark> AAGGA | GAGAGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTATI | TGGAGCTAT | AGCAGG  |
| F0029 | CAACATCC/ | CCCTCTC | ACCATC GGGG               | AA <mark>T</mark> GCCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | TC AAGGA               | GAGAGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0017 | CAACATCC  | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>T</mark> GCCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | TC AAGGA               | GAGAGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0018 | CAACATCC  | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>TG</mark> CCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAGGA | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0015 | CAACATCC/ | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>TG</mark> CCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAGGA | GAGAGA/             | A <mark>GAAG</mark> AAAAAAG | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0022 | CAACATCC/ | CCCTCTC | ACCATC GGGG               | AA <mark>TG</mark> CCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAGGA | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0016 | CAACATCC/ | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>T</mark> GCCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | T <mark>C</mark> AAGGA | GAGAGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0011 | CAACATCC  | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>T</mark> GCCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAATAGCCC                | T <mark>C</mark> AAGGA | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0025 | CAACATCC/ | CCCTCTC | ACC <mark>ATC</mark> GGGG | AA <mark>TG</mark> CCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAO               | ATTAGTCCI | TGCGACT(  | GGG <mark>CTC</mark> AG | AAATAGCCC                | T <mark>C</mark> AAGGA | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0001 | CAACATCC/ | CCCTCTC | ACCATCGGGG                | AA <mark>TG</mark> CCCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAATAGTCC                | TC AAGGA               | GAGAGA/             | 1 <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0002 | CAACATCC  | CCATCTC | ACCATCGGGG                | AA <mark>T</mark> GCCCCA/ | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCCI | TGCGACT   | GGG <mark>CTC</mark> AG | AAA <mark>T</mark> AGCCC | TCAAGGC                | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0028 | CAACATCC  | CCCTCTC | ACCATC GGGG               | AAT GCCCC A               | AATAT <mark>GTG</mark> AAA | TCAAACAG               | ATTAGTCC  |           | GGG <mark>CTC</mark> AG | AAATAGCCC                | TCAAGGA                | GAGAGA/             | A <mark>GAAG</mark> AAAAAA  | AGAGGACTAT  | TGGAGCTAT | AGC AGG |
| F0026 | CAACATCC/ | CCCTCTC | ACCATCGGGG                | AAT GCCCC A               | AATAT <mark>GT</mark> GAAA | TCAAACAG               | ATTAGTCC  |           | GGG <mark>CTC</mark> AG | AAAT AGCCC               | TCAAGGA                | GAGAGA/             | 1 <mark>GAAG</mark> AAAAAAA | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0023 | CAACATAC/ | CCCTCTC | ACCATCGGGG                | AATGTCCCA                 | AATAT <mark>GT</mark> GAAA | <mark>ТСАААС</mark> АА | ATTAGTCC  |           | GGG <mark>CTC</mark> AG | AAATAGCCC                | TCAAAGA                | GAG/                | AGAAGAAGAAAA                | AGAGGACTAT  | TGGAGCTAT | AGC AGG |
| F0035 | CAACATAC/ | CCCTCTC | ACCATCGGGG                | AAT <mark>GT</mark> CCCA  | AATAT <mark>GT</mark> GAAA | TCAAACAA               | ATTAGTCC  | TGCGACT   | GGG <mark>CTCA</mark> G | AAATAGCCC                | TCAAAGA                | GAG/                | A <mark>GG</mark> AGAAGAAAA | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0031 | CAACATACA | CCCTCTC | ACCATC GGGG               | AATGTCCCA/                | AATAT <mark>GTG</mark> AAA | тсааасаа               | ACTAGTCC  | TGCGACT   | GGGCTCAG                | AAATAGCCC                | TCAAAGA                | GAG/                | A <mark>GAAGAAGG</mark> AAA | AGAGGACTAT  | TGGAGCTAT | AGCAGG  |
| F0003 | CAACATACA | CCCTCTC | ACCATCGGGG                | AATGTCCCA                 | AATATGTGAAA                | ТСАААСАА               | ATTAGTCC  | TGCGACT   | GGGCTCAG                | AAATAGCCC                | CAAAGA                 | GAG                 | A <mark>GAAGAAGG</mark> AAA | AGAGGACTAT  | GGGGCTAT  | AGCAGG  |

Multiple sequence alignment: find more subtle patterns & find common patterns between all sequence.

## MSA

• The multiple sequence alignment problem:

Input: Sequences: S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>m</sub>

Let M be a MSA between these sequences.

Let  $d_M(S_i, S_j)$  be the score of the alignment between  $S_i$  and  $S_j$  implied by M.

SP-Score(M) =  $\sum_{i,j} d_M(S_i, S_j)$  = Sum of all pairwise alignment scores.

- **Goal**: find M to **minimize** SP-Score(M).
- But this is NP-hard.

## SP-Score in a Picture

 $SP-Score(M) = \sum_{i,j} d_M(S_i, S_j)$ 

= sum of all the scores of the pairwise alignments implied by M.



## MSA

- A multiple sequence alignment (MSA) implies a pairwise alignment between every pair of sequences.
- This implied alignment need not be optimal, however:

match = -1, a mismatch = 1, gap = 2 Sequences: AT, A, T, AT, AT



## Slow Dynamic Programming

Suppose you had just 3 sequences.

Apply the same DP idea as sequence alignment for 2 sequences, but now with a 3-dimensional matrix



## **DP** Recurrence for 3 sequences

$$A[i, j, k] = \min \begin{cases} \cos(x_i, y_j, z_k) + A[i - 1, j - 1, k - 1] \\ \cos(x_i, -, -) + A[i - 1, j, k] \\ \cos(x_i, y_j, -) + A[i - 1, j - 1, k] \\ \cos(x_i, -, y_j, 2_k) + A[i, j - 1, k - 1] \\ \cos(x_i, -, z_k) + A[i - 1, j, k - 1] \\ \cos(x_i, -, z_k) + A[i, j, k - 1] \\ \cos(x_i, -, z_k) + A[i, j, k - 1] \\ for the gaps. \end{cases}$$

## Running time

- $n^3$  subproblems, each takes  $2^3$  time  $\Rightarrow O(n^3)$  time.
- For k sequences:  $n^k$  subproblems, each takes  $2^k$  time for the max and  $k^2$  to compute cost()  $\Rightarrow O(k^2n^k2^k)$
- Even O(n<sup>3</sup>) is often too slow for the length of sequences encountered in practice.
- One solution: approximation algorithm.



## Star Alignment Approximation





## Star Alignment Algorithm

Input: sequences S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>k</sub>

- Build all  $O(k^2)$  pairwise alignments.
- Let  $S_c$  = the sequence in  $S_1$ ,  $S_2$ , ...,  $S_k$  that is closest to the others. That is, choose  $S_c$  to minimize:

 $\sum_{i\neq c} d(S_c, S_i)$ 

• Iteratively align all other sequences to S<sub>c</sub>.



## Iterative Alignment

• Build a multiple sequence alignment up from pairwise alignments.

Start with an alignment between  $S_c$  and some other sequence:

SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL

Add 3rd sequence, say S2, and use the SC - S2 alignment as a guide, adding spaces into the MSA as needed.

#### SC - S2 alignment:

SC YFPHF-DLS----HGSAQVKAHGKKVGDALTLAVGHL----DDLPGAL S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS

#### New {SC, SI, S2} alignment (red gaps added in SI):

- SC YFPHF-DLS----HGSAQVKAHGKKVGDALTLAVGHL----DDLPGAL
- S1 YFPHF-DLS----HG-AQVKG--KKVADALTNAVAHV----DDMPNAL
- S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS

Continue with S3, S4, ...

## Performance

Assume the cost function satisfies the triangle inequality:

 $cost(x,y) \le cost(x,z) + cost(z,y)$ 

Example:  $cost(A, C) \le cost(A, T) + cost(T, C)$ 

cost of I mutation from  $A \rightarrow C$ 

cost of a mutation from  $A \rightarrow T$  and then from  $T \rightarrow C$ 

STAR = cost of star alignment under SP-score

OPT = cost of optimal multiple sequence alignment (under SP-score)

**Theorem**. If cost satisfies the triangle inequality, then STAR  $\leq 2 \times OPT$ .

Example: if optimal alignment has cost 10, the star alignment will have  $cost \le 20$ .

## Proof (I)

**Theorem**. If cost satisfies the triangle inequality, then STAR  $\leq$  2OPT.

 $\frac{\text{STAR}}{\text{OPT}} \le 2$ 

For some *B* we will prove the 2 statements:

 $\begin{array}{l} \text{STAR} \leq 2B \\ \text{OPT} \geq B \end{array}$ 

This will imply:

$$\implies \frac{\text{STAR}}{\text{OPT}} \le \frac{2B}{B} = 2$$

## Proof (2)

**Theorem**. If cost satisfies the triangle inequality, then STAR  $\leq$  2OPT.

$$2 \cdot \text{STAR} = \sum_{ij} d_{\text{STAR}}(S_i, S_j) \text{ defn of SP-score}$$
by triangle  $\leq \sum_{ij} (d_{\text{STAR}}(S_i, S_c) + d_{\text{STAR}}(S_c, S_j))$ 
because STAR  $= \sum_{ij} (d(S_i, S_c) + d(S_c, S_j))$ 
for pairs involving Sc  $= \sum_{ij} d(S_i, S_c) + \sum_{ij} d(S_c, S_j)$ 
 $\leq 2k \sum_i d(S_i, S_c)$ 
sums are the same and each term appears  $\leq k \text{ (\# of sequences)}$ 
times.

## Proof (3)

**Theorem**. If cost satisfies the triangle inequality, then STAR  $\leq$  2OPT.

 $2 \cdot \text{OPT} = \sum d_{\text{OPT}}(S_i, S_j)$ defn of SP-score ijoptimal pairwise alignment  $\begin{array}{ll} \text{is} \leq \text{pairwise alignment} \\ \text{induced by any MSA} \end{array} \geq \sum_{ij} d(S_i, S_j) \end{array}$  $\geq k \sum_{i} d(S_i, S_c)$ 

sum of all cost of all pairwise alignments is = the sum of kdifferent stars.

We chose  $S_c$  because it was the lowest-cost star.

## End of Proof

For some *B* we will prove the 2 statements:

$$\begin{array}{l} \mathrm{STAR} \leq 2B \\ \mathrm{OPT} \geq B \end{array}$$

This will imply:

$$\implies \frac{\text{STAR}}{\text{OPT}} \le \frac{2B}{B} = 2$$

$$2 \cdot STAR \leq 2k \sum_{i} d(S_{i}, S_{c})$$

$$2 \cdot OPT \geq k \sum_{i} d(S_{i}, S_{c})$$

$$\implies \frac{STAR}{OPT} \leq \frac{2k \sum_{i} d(S_{i}, S_{c})}{k \sum_{i} d(S_{i}, S_{c})} = 2$$

## **Consensus Sequence**

For every column j, choose  $c \in \sum$  that minimizes  $\sum_{i} \text{cost}(c, S_i[j])$ 

(typically this means the most common letter)

S1 YFPHF-DLS----HGSAQVKAHGKKVG----DALTLAVAHLDDLPGAL

- S2 YFPHF-DLS----HG-AQVKG-GKKVA----DALTNAVAHVDDMPNAL
- S3 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
- S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

CO YFPHFKDLS----HGSAQVKAHGKKVG----DALTLAVAHVDDTPGAL

- Consensus is a summarization of the whole alignment.
- Consensus sequence is sometimes used as an estimate for the ancestral sequence.
- Sometimes the MSA problem is formulated as: find MSA M that minimizes:

 $\sum_i d_M(CO, S_i)$ 

## Profiles

- Another way to summarize an MSA:
  - S1 ACG-TT-GA
  - S2 ATC-GTCGA
  - S3 ACGCGA-CC
  - S4 ACGCGT-TA



# Character

## **Profile-based Alignment**

gap in profile introduced to better fit sequence

|   | I | 2    | 3    | 4   |
|---|---|------|------|-----|
| А | Ι | 0    | 0    | 0   |
| С | 0 | 0.75 | 0.25 | 0.5 |
| G | 0 | 0    | 0.75 | 0   |
| Т | 0 | 0.25 | 0    | 0   |
|   | 0 | 0    | 0    | 0.5 |

| 5    | 6    | 7    | 8    | 9    |  |
|------|------|------|------|------|--|
| 0    | 0.25 | 0    | 0    | 0.75 |  |
| 0    | 0    | 0.25 | 0.25 | 0.25 |  |
| 0.75 | 0    | 0    | 0.5  | 0    |  |
| 0.25 | 0.75 | 0    | 0.25 | 0    |  |
| 0    | 0    | 0.75 | 0    | 0    |  |

Score of matching character x with column j of the profile:

$$P(x,j) = \sum_{c \in \Sigma} \sin(x,c) \times R[c,j]$$

ACC - AGACGA

sim(x,c) = how similar character x isto character c.

j

$$A[i,j] = \max \begin{cases} A[i-1,j-1] + P(x_i,j) & \text{align } x_i \text{ to column } j \\ A[i-1,j] + \text{gap} & \text{introduce gap into profile} \\ A[i,j-1] + P(``\_``,j) & \text{introduce gap into } x \end{cases}$$

## Recap

- Multiple sequence alignments (MSAs) are a fundamental tool. They help reveal subtle patterns, compute consistent distances between sequences, etc.
- Quality of MSAs often measured using the SP-score: sum of the scores of the pairwise alignments implied by the MSA.
- Same DP idea as pairwise alignment leads to exponentially slow algorithm for MSA.
- 2-approximation obtainable via star alignments.
- MSAs often used to create profiles summarizing a family of sequences. Profile-sequence alignments solvable via dynamic programming.