Multiple Sequence Alignment

CMSC 423

Multiple Sequence Alignment

Multiple sequence alignment: find more subtle patterns \& find common patterns between all sequence.

MSA

- The multiple sequence alignment problem:

Input: Sequences: $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{m}}$
Let M be a MSA between these sequences.
Let $d_{M}\left(S_{i}, S_{j}\right)$ be the score of the alignment between S_{i} and S_{j} implied by M.

SP-Score $(M)=\sum_{i, j} d_{M}\left(S_{i}, S_{i}\right)=$ Sum of all pairwise alignment scores.

- Goal: find M to minimize SP-Score(M).
- But this is NP-hard.

SP-Score in a Picture

$\operatorname{SP}-\operatorname{Score}(M)=\sum_{i, j} d_{M}\left(S_{i}, S_{j}\right)$
= sum of all the scores of the pairwise alignments implied by M.

MSA

- A multiple sequence alignment (MSA) implies a pairwise alignment between every pair of sequences.
- This implied alignment need not be optimal, however:

$$
\text { match }=-1, \text { a mismatch }=1, \text { gap }=2
$$

Sequences: AT, A, T, AT, AT

Slow Dynamic Programming

Suppose you had just 3 sequences.
Apply the same DP idea as sequence alignment for 2 sequences, but now with a 3-dimensional matrix

DP Recurrence for 3 sequences

$$
A[i, j, k]=\min \left\{\begin{array}{l}
\operatorname{cost}\left(x_{i}, y_{j}, z_{k}\right)+A[i-1, j-1, k-1] \\
\operatorname{cost}\left(x_{i},-,-\right)+A[i-1, j, k] \\
\operatorname{cost}\left(x_{i}, y_{j},-\right)+A[i-1, j-1, k] \\
\operatorname{cost}\left(-, y_{j}, z_{k}\right)+A[i, j-1, k-1] \\
\operatorname{cost}\left(-, y_{j},-\right)+A[i, j-1, k] \\
\operatorname{cost}\left(x_{i},-, z_{k}\right)+A[i-1, j, k-1] \\
\operatorname{cost}\left(-,-, z_{k}\right)+A[i, j, k-1]
\end{array}\right.
$$

Running time

- n^{3} subproblems, each takes 2^{3} time $\Rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$ time.
- For k sequences: n^{k} subproblems, each takes 2^{k} time for the max and k^{2} to compute $\operatorname{cost}() \Rightarrow \mathrm{O}\left(\mathrm{k}^{2} \mathrm{n}^{\mathrm{k}} 2^{\mathrm{k}}\right)$
- Even $O\left(n^{3}\right)$ is often too slow for the length of sequences encountered in practice.

- One solution: approximation algorithm.

Star Alignment Approximation

SP-Score

$\sum_{i} d_{m}\left(S_{i}, S_{c}\right)$

Star Alignment Algorithm

Input: sequences $S_{1}, S_{2}, \ldots, S_{k}$

- Build all $\mathrm{O}\left(\mathrm{k}^{2}\right)$ pairwise alignments.
- Let $S_{c}=$ the sequence in $S_{1}, S_{2}, \ldots, S_{k}$ that is closest to the others.

That is, choose S_{c} to minimize:

$$
\sum_{i \neq c} d\left(S_{c}, S_{i}\right)
$$

- Iteratively align all other sequences to S_{c}.

Iterative Alignment

- Build a multiple sequence alignment up from pairwise alignments.

Start with an alignment between S_{c} and some other sequence:
SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL
S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL
Add 3rd sequence, say S2, and use the SC - S2 alignment as a guide, adding spaces into the MSA as needed.

SC - S2 alignment:
SC YFPHF-DLS-----HGSAQVKAHGKKVGDALTLAVGHL----DDLPGAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
New $\{\mathrm{SC}, \mathrm{SI}, \mathrm{S} 2\}$ alignment (red gaps added in SI):
SC YFPHF-DLS-----HGSAQVKAHGKKVGDALTLAVGHL----DDLPGAL
S1 YFPHF-DLS-----HG-AQVKG--KKVADALTNAVAHV----DDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
Continue with S3, S4, ...

Performance

Assume the cost function satisfies the triangle inequality:

$$
\operatorname{cost}(x, y) \leq \operatorname{cost}(x, z)+\operatorname{cost}(z, y)
$$

Example: $\operatorname{cost}(\mathrm{A}, \mathrm{C}) \leq \operatorname{cost}(\mathrm{A}, \mathrm{T})+\operatorname{cost}(\mathrm{T}, \mathrm{C})$
cost of I
mutation from

$$
A \rightarrow C
$$

cost of a mutation
from $A \rightarrow T$ and
then from $T \rightarrow C$

STAR = cost of star alignment under SP-score
OPT = cost of optimal multiple sequence alignment (under SP-score)

Theorem. If cost satisfies the triangle inequality, then STAR $\leq 2 \times$ OPT.

Example: if optimal alignment has cost IO, the star alignment will have cost ≤ 20.

Proof (I)

Theorem. If cost satisfies the triangle inequality, then STAR $\leq 2 O P T$.

$$
\frac{\mathrm{STAR}}{\mathrm{OPT}} \leq 2
$$

For some B we will prove the 2 statements:

$$
\begin{aligned}
& \mathrm{STAR} \leq 2 B \\
& \mathrm{OPT} \geq B
\end{aligned}
$$

This will imply:

$$
\Longrightarrow \frac{\mathrm{STAR}}{\mathrm{OPT}} \leq \frac{2 B}{B}=2
$$

Proof (2)

Theorem. If cost satisfies the triangle inequality, then STAR \leq 2OPT.

$$
\begin{aligned}
2 \cdot \operatorname{STAR} & =\sum_{i j} d_{\mathrm{STAR}}\left(S_{i}, S_{j}\right) \text { defn of SP-score } \\
\begin{aligned}
\text { by triangle } \\
\text { inequality }
\end{aligned} & \leq \sum_{i j}\left(d_{\mathrm{STAR}}\left(S_{i}, S_{c}\right)+d_{\mathrm{STAR}}\left(S_{c}, S_{j}\right)\right) \\
\begin{array}{r}
\text { because STAR } \\
\text { ment is optimal } \\
\text { airs involving Sc }
\end{array} & =\sum_{i j}\left(d\left(S_{i}, S_{c}\right)+d\left(S_{c}, S_{j}\right)\right) \\
\text { distribute } \Sigma & =\sum_{i j} d\left(S_{i}, S_{c}\right)+\sum_{i j} d\left(S_{c}, S_{j}\right) \\
& \leq 2 k \sum_{i} d\left(S_{i}, S_{c}\right) \begin{array}{l}
\text { sums are the same } \\
\text { and each term appears } \\
\leq \mathrm{k} \text { (\# of sequences) } \\
\text { times. }
\end{array}
\end{aligned}
$$

Proof (3)

Theorem. If cost satisfies the triangle inequality, then STAR $\leq 2 O P T$.

$$
2 \cdot \mathrm{OPT}=\sum_{i j} d_{\mathrm{OPT}}\left(S_{i}, S_{j}\right) \quad \text { defn of SP-score }
$$

optimal pairwise alignment
is \leq pairwise alignment

$$
\geq \sum_{i j} d\left(S_{i}, S_{j}\right)
$$

sum of all cost of all pairwise

$$
\geq k \sum_{i} d\left(S_{i}, S_{c}\right)
$$ alignments is = the sum of k different stars.

We chose S_{c} because it was the lowest-cost star.

End of Proof

For some B we will prove the 2 statements:

$$
\begin{aligned}
& \mathrm{STAR} \leq 2 B \\
& \mathrm{OPT} \geq B
\end{aligned}
$$

This will imply:

$$
\Longrightarrow \frac{\mathrm{STAR}}{\mathrm{OPT}} \leq \frac{2 B}{B}=2
$$

$$
\begin{aligned}
2 \cdot S T A R & \leq 2 k \sum_{i} d\left(S_{i}, S_{c}\right) \\
2 \cdot O P T & \geq k \sum_{i} d\left(S_{i}, S_{c}\right)
\end{aligned}
$$

$$
\Longrightarrow \frac{\mathrm{STAR}}{\mathrm{OPT}} \leq \frac{2 k \sum_{i} d\left(S_{i}, S_{c}\right)}{k \sum_{i} d\left(S_{i}, S_{c}\right)}=2
$$

Consensus Sequence

For every column j, choose $\mathrm{c} \in \sum$ that
minimizes $\sum_{i} \operatorname{cost}\left(c, S_{i}[j]\right) \backsim$

S1 YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S2 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
S3 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL
CO YFPHFKDLS-----HGSAQVKAHGKKVG-----DALTLAVAHVDDTPGAL

- Consensus is a summarization of the whole alignment.
- Consensus sequence is sometimes used as an estimate for the ancestral sequence.
- Sometimes the MSA problem is formulated as: find MSA M that minimizes:

$$
\sum_{i} d_{M}\left(C O, S_{i}\right)
$$

Profiles

- Another way to summarize an MSA:

$$
\begin{array}{ll}
\text { S1 } & \text { ACG-TT-GA } \\
\text { S2 } & \text { ATC-GTCGA } \\
\text { S3 } & \text { ACGCGA-CC } \\
\text { S4 } & \text { ACGCGT-TA }
\end{array}
$$

Column in the alignment

		2	3	4	5	6	7	8	9	matrix R
A	1	0	0	0	0	0.25	0	0	0.75	Fraction of time given column had the given character
C	0	0.75	0.25	0.5	0	0	0.25	0.25	0.25	
G	0	0	0.75	0	0.75	0	0	0.5	0	
τ	0	0.25	0	0	0.25	0.75	0	0.25	0	
-	0	0	0	0.5	0	0	0.75	0	0	

Profile-based Alignment

Score of matching character \times with column j of the profile:

$$
P(x, j)=\sum_{c \in \Sigma} \operatorname{sim}(x, c) \times R[c, j]
$$

$\operatorname{sim}(x, c)=$ how similar character x is to character c .

$$
A[i, j]=\max \begin{cases}A[i-1, j-1]+P\left(x_{i}, j\right) & \text { align } x_{i} \text { to column } j \\ A[i-1, j]+\text { gap } & \text { introduce gap into profile } \\ A[i, j-1]+P("-", j) & \text { introduce gap into } x\end{cases}
$$

Recap

- Multiple sequence alignments (MSAs) are a fundamental tool.They help reveal subtle patterns, compute consistent distances between sequences, etc.
- Quality of MSAs often measured using the SP-score: sum of the scores of the pairwise alignments implied by the MSA.
- Same DP idea as pairwise alignment leads to exponentially slow algorithm for MSA.
- 2-approximation obtainable via star alignments.
- MSAs often used to create profiles summarizing a family of sequences. Profile-sequence alignments solvable via dynamic programming.

