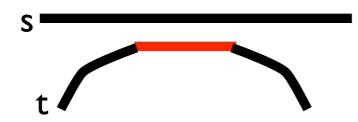
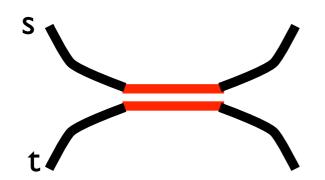
Local Alignment & Gap Penalties

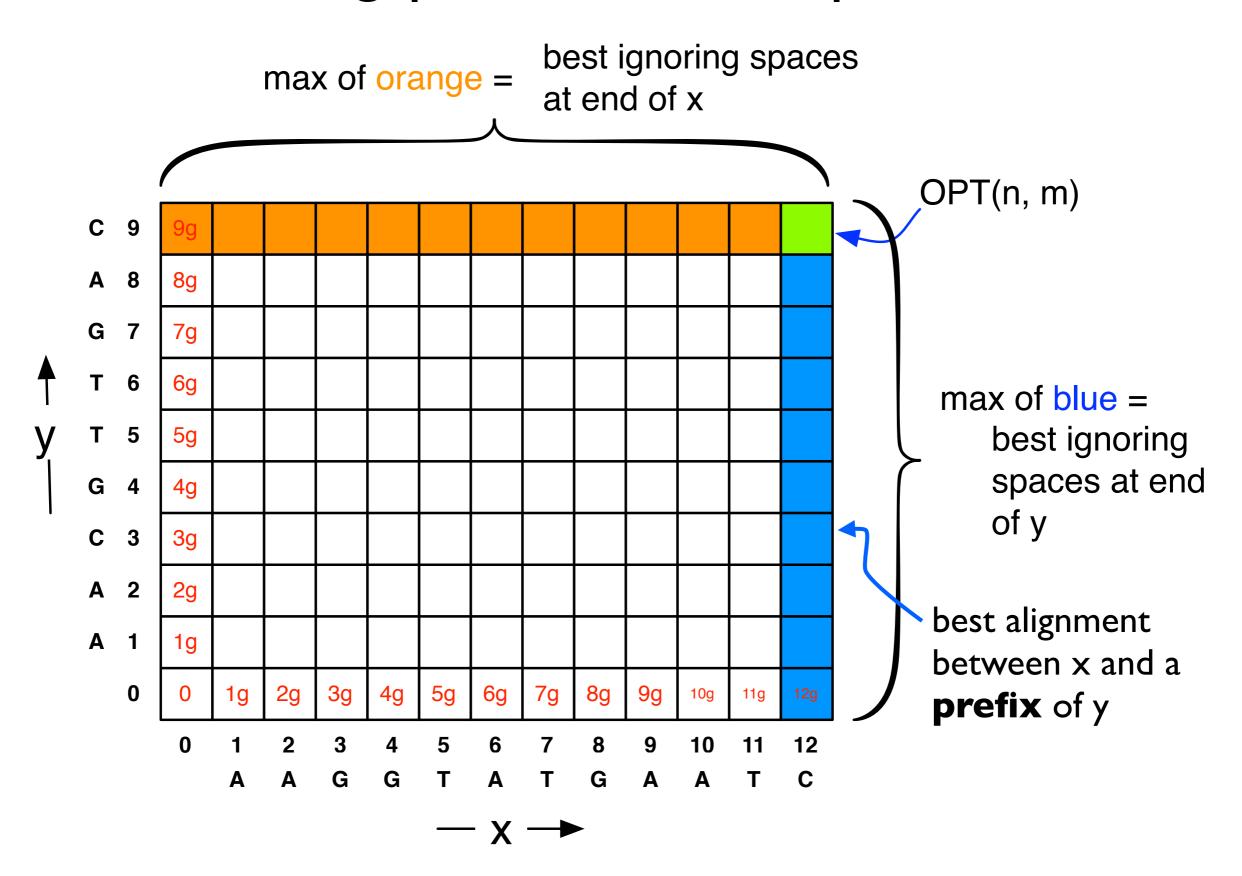

CMSC 423

Global, Semi-global, Local Alignments

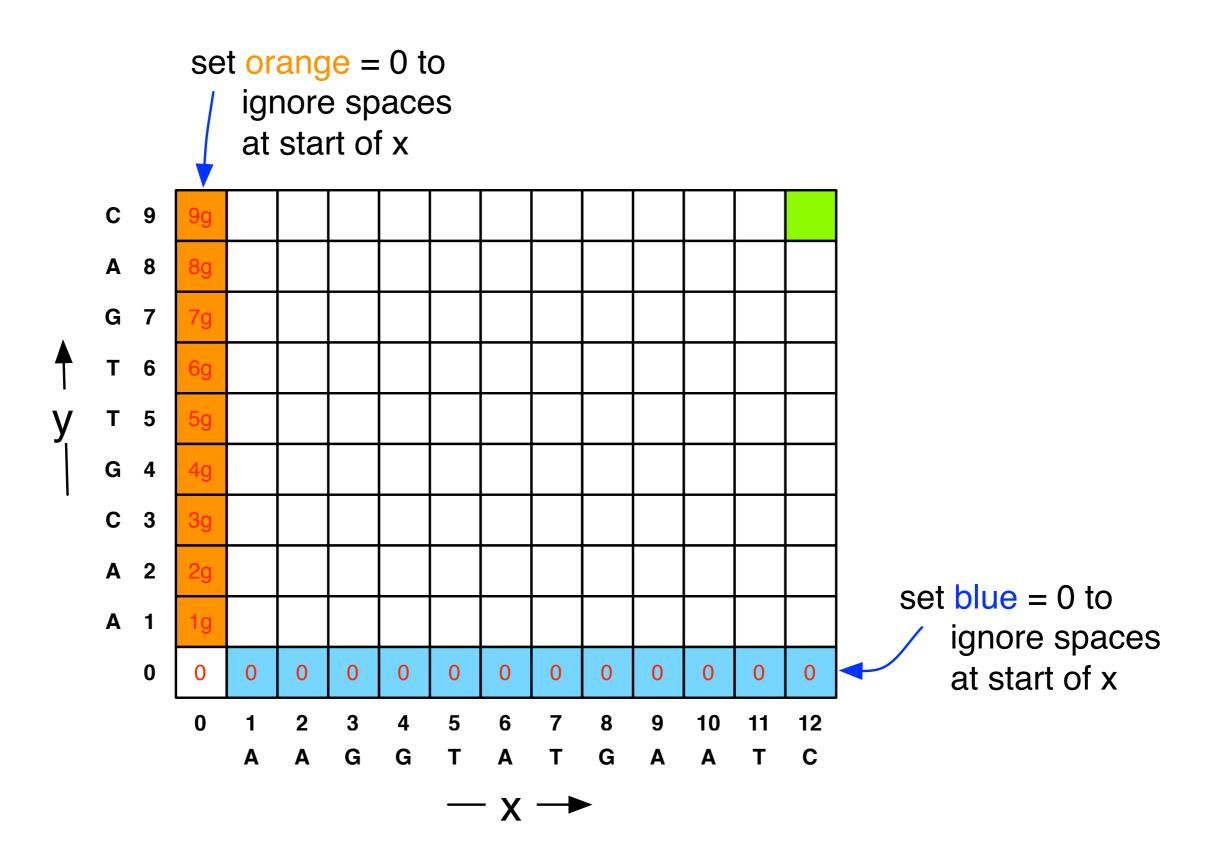
 Last time, we saw a dynamic programming algorithm for global alignment: both strings s and t must be completely matched:



• Semiglobal:


Gaps at starts and ends of some sequences come for free

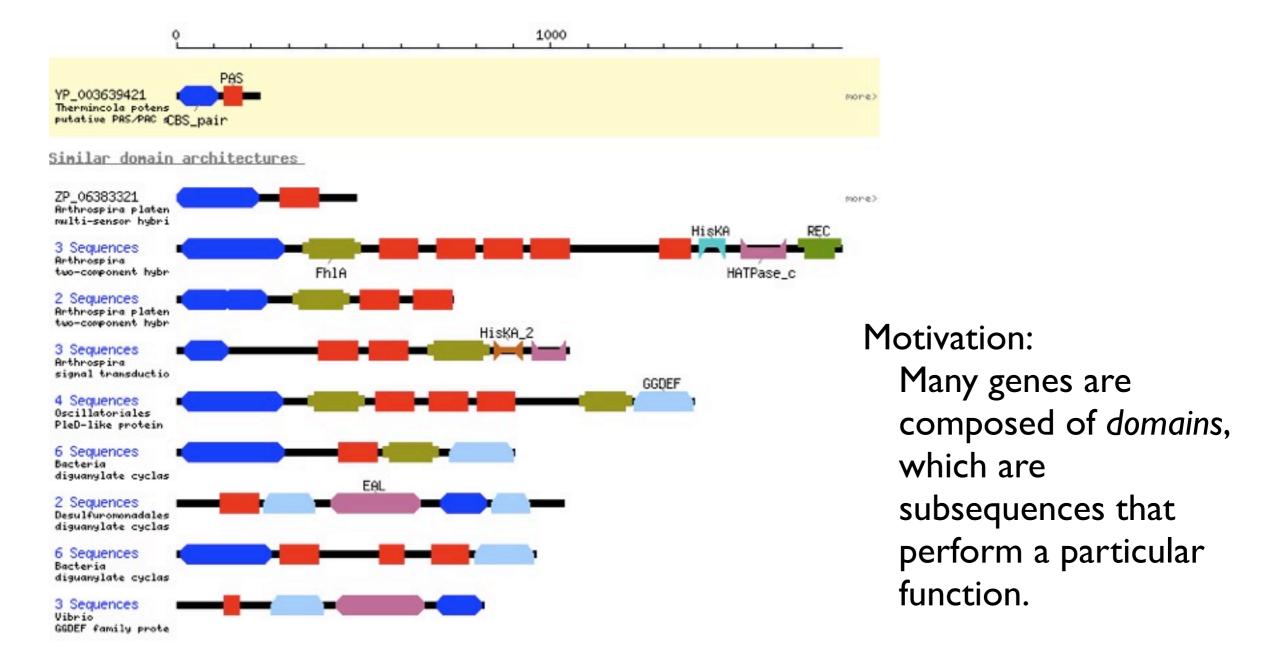
Local:



Best alignment between substrings of s and t.

Free gaps at ends of sequences

Free gaps at the start of sequences

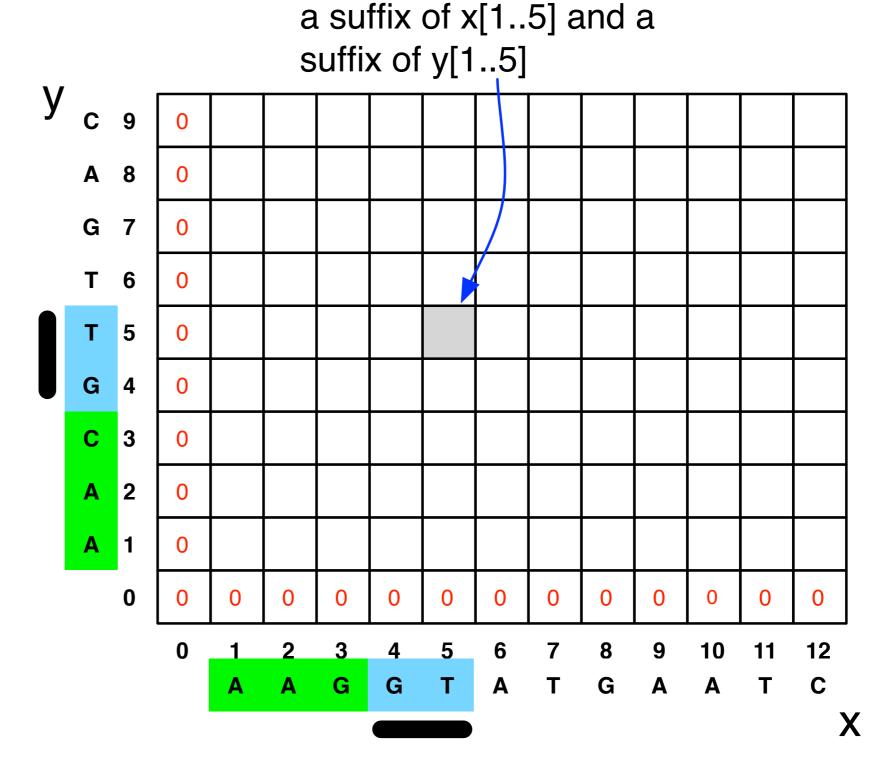

Semiglobal Recap

Free spaces @	What to do
end of x	take max of topmost row
end of y	take max of rightmost row
start of x	set bottommost row to 0
start of y	set leftmost row to 0

- Can combine these arbitrarily: e.g. to have free spaces at the start of x and both ends of y:
 - set bottom- and left-most rows to 0 and take the max of the rightmost row.

Local Alignment

Local alignment between s and t: Best alignment between a subsequence of s and a subsequence of t.



Local Alignment

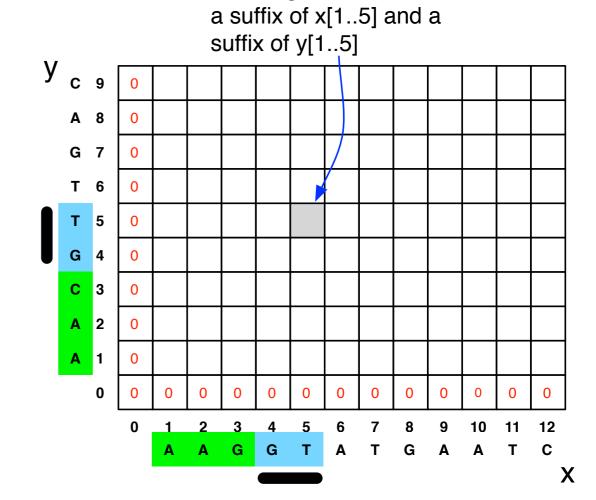
New meaning of entry of matrix entry:

A[i, j] = best score between a suffix of s[l...i] and a suffix of t[l...j]

Initialize first row and first column to be 0.

Best alignment between

How do we fill in the local alignment matrix?


$$A[i,j] = \max \begin{cases} A[i,j-1] + \text{gap} \\ A[i-1,j] + \text{gap} \\ A[i-1,j-1] + \text{match}(i,j) \\ 0 \end{cases}$$
 Best alignment between

(1), (2), and (3): same cases as before:

gap in x, gap in y, match x and y

New case: 0 allows you to say the best alignment between a suffix of x and a suffix of y is the empty alignment.

Lets us "start over"

Local Alignment

- The score of the best local alignment is the largest value in the entire array.
- To find the actual local alignment:
 - start at an entry with the maximum score
 - traceback as usual
 - stop when we reach an entry with a score of 0

Local Alignment Python Code

```
def local align(x, y, score=ScoreParam(-2, 10, -5)):
    """Do a local alignment between x and y"""
    # create a zero-filled matrix
    A = make matrix(len(x) + 1, len(y) + 1)
    best = 0
    optloc = (0,0)
    # fill in A in the right order
    for i in xrange(1, len(x)):
        for j in xrange(1, len(y)):
            # the local alignment recurrance rule:
            A[i][j] = max(
               A[i][j-1] + score.gap,
               A[i-1][j] + score.gap,
               A[i-1][j-1] + (score.match if x[i] == y[j] else score.mismatch),
            # track the cell with the largest score
            if A[i][j] >= best:
                best = A[i][j]
                optloc = (i,j)
    # return the opt score and the best location
    return best, optloc
```

Local Alignment Python Code

```
def make_matrix(sizex, sizey):
    """Creates a sizex by sizey matrix filled with zeros."""
    return [[0]*sizey for i in xrange(sizex)]

class ScoreParam:
    """The parameters for an alignment scoring function"""
    def __init__(self, gap, match, mismatch):
        self.gap = gap
        self.match = match
        self.mismatch = mismatch
```

Local Alignment Example #1

```
local align("AGCGTAG", "CTCGTC")
              G
                      G
  *
                     6 18
                             16
                         16
                             14 12
      0
                 10
                     20
                             16 24
                  8
                         18
             10
                         30
                             28 26
          0 8
                  6
                     18
      0
              6
                             26
          0
                 18
                     16
                         28
                                 24
      0
```

```
Score (a, a) = 10

Score (a, b) = -5

Score (a, -) = -2
```

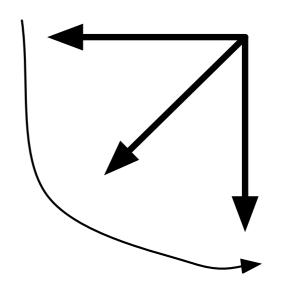
Note: this table written top-to-bottom instead of bottom-to-top

More Local Alignment Examples

```
Score(a,a) = 10

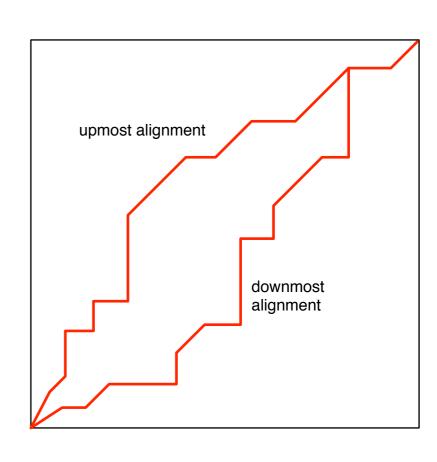
Score(a,b) = -5

Score(a,-) = -2
```


```
local_align("catdogfish", "dog")
                   t
                        d
                                                  h
          C
               a
                                                  0
               0
                   0
                        0
  *
                            8 6
               0
                   0
                       10
  d
                                                  0
               0
                   0
                        8
                                    16
                           20
                                18
                                        14
                                                 10
  0
               0
                   0
                           18
                                30
                                    28
                                             24
                                                 22
  g
                                        26
```

```
local align("mississippi", "issp")
                i
                    S
                         S
                              ĺ
                                                          0
                0
                    0
                         0
                              0
  *
  i
                  8
                      6
                            10
              10
                                           10
                                                         10
                        18
                             16
                                                    12
                                                        10
              8
                   20
                                 20
                                      18
                                           16
                                               14
  S
                   18
                        30
                             28
                                 26
                                      30
                                           28
                                               26
                                                    24
                                                         22
  S
                                 24
                   16
                        28
                             26
                                      28
                                           26
                                               38
                                                    36
                                                         34
  р
```

```
local align("aaaa", "aa")
            a
                 a
                     a
                          a
  *
       0
            0
                0
                     0
                          0
          10
               10
                    10
                         10
       0
  a
           10
               20
       0
                    20
                         20
  a
```


Upmost and Downmost Alignments

When there are ties in the max{}, we have a choice about which arrow to follow.

If we prefer arrows higher in the matrix, we get the *upmost* alignment.

If we prefer arrows lower in the matrix, we get the downmost alignment.

Local / Global Recap

- Alignment score sometimes called the "edit distance" between two strings.
- Edit distance is sometimes called Levenshtein distance.
- Algorithm for local alignment is sometimes called "Smith-Waterman"
- Algorithm for global alignment is sometimes called "Needleman-Wunsch"
- Same basic algorithm, however.

General Gap Penalties

AAAGAATCCA
$$vs.$$
 AAAGAATCCA $AAA---$ TCA

These have the same score, but the second one is often more plausible.

A single insertion of "GAAT" into the first string could change it into the second.

- Now the cost of a run of k gaps is GAP × k
- A solution to the problem above is to support general gap penalty, so that the score of a run of k gaps is gap(k) < GAP × k.
- Then, the optimization will prefer to group gaps together.

General Gap Penalties

Previous DP no longer works with general gap penalties because the score of the last character depends on details of the previous alignment:

AAAGAAT C AAAGAAT C AAA
$$---$$
T $AAA----$ T

Instead, we need to "know" how the previous alignment ends in order to give a score to the last subproblem.

Three Matrices

We now keep 3 different matrices:

M[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a character-character **match or mismatch**.

X[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a **space in X**.

Y[i,j] =score of best alignment of x[1..i] and y[1..j] ending with a **space in Y**.

$$M[i,j] = \text{match}(i,j) + \max \begin{cases} M[i-1,j-1] \\ X[i-1,j-1] \\ Y[i-1,j-1] \end{cases}$$

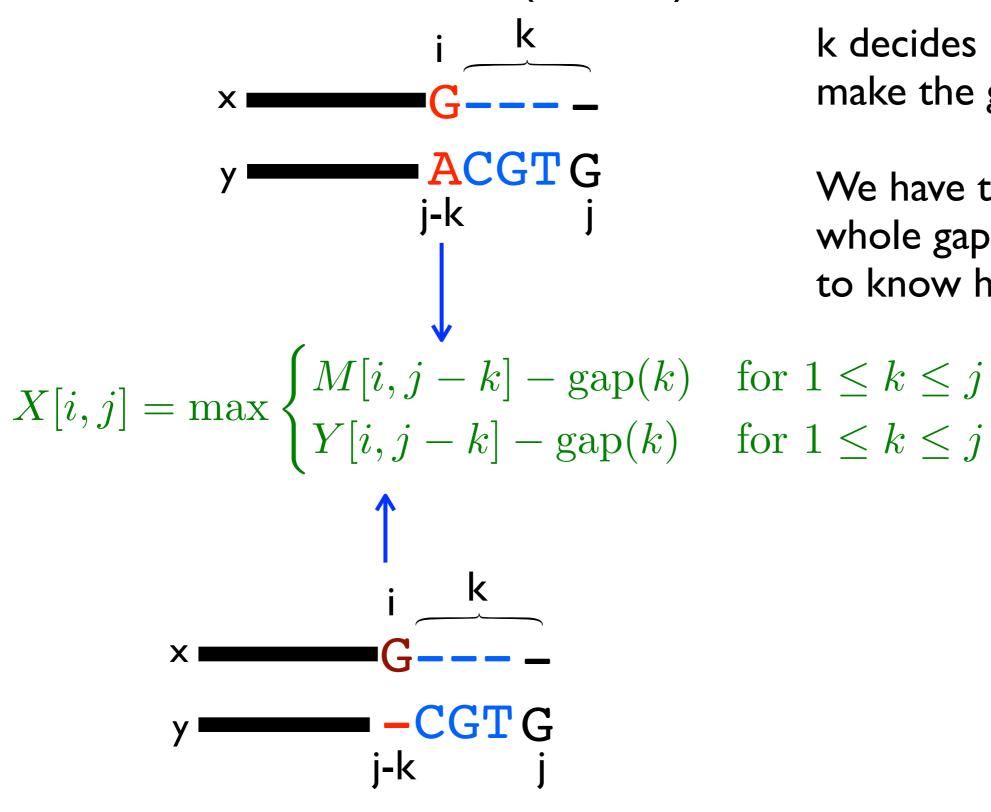
$$X[i,j] = \max \begin{cases} M[i,j-k] - \operatorname{gap}(k) & \text{for } 1 \le k \le j \\ Y[i,j-k] - \operatorname{gap}(k) & \text{for } 1 \le k \le j \end{cases}$$

$$Y[i,j] = \max \begin{cases} M[i-k,j] - \operatorname{gap}(k) & \text{for } 1 \le k \le i \\ X[i-k,j] - \operatorname{gap}(k) & \text{for } 1 \le k \le i \end{cases}$$

The M Matrix

We now keep 3 different matrices:

M[i,j] = score of best alignment of x[1..i] and y[1..i] ending with a character-character **match or mismatch**.

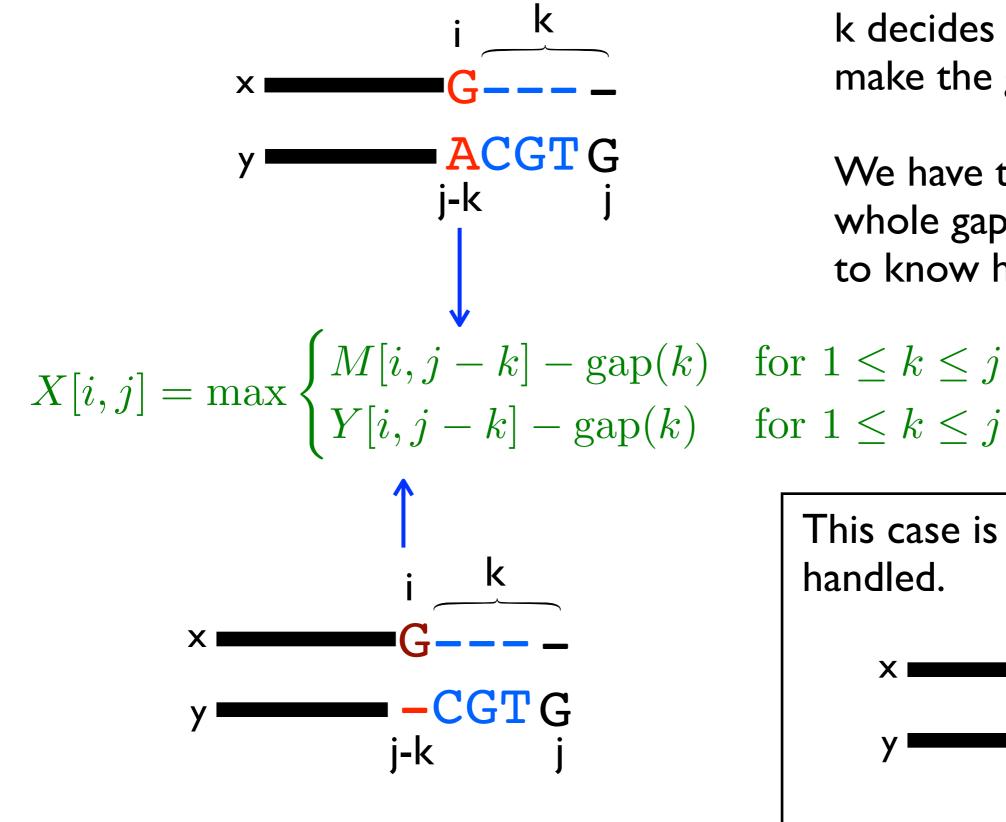

X[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a **space in X**.

Y[i,j] =score of best alignment of x[1..i] and y[1..j] ending with a **space in Y**.

By definition, alignment ends in a match.

Any kind of alignment is allowed before the match.

The X (and Y) matrices

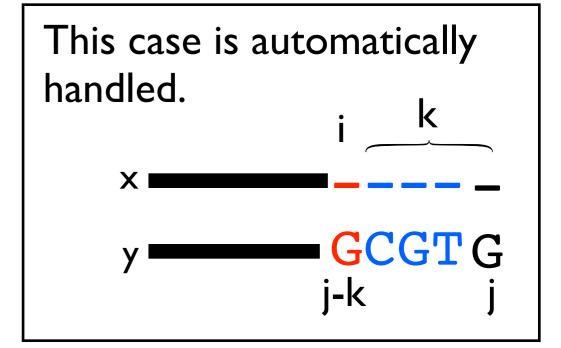


k decides how long to make the gap.

We have to make the whole gap at once in order to know how to score it.

for
$$1 \le k \le j$$

for $1 \le k \le j$


The X (and Y) matrices

k decides how long to make the gap.

We have to make the whole gap at once in order to know how to score it.

for
$$1 \le k \le j$$

for $1 \le k \le j$

Running Time for Gap Penalties

$$M[i,j] = \text{match}(i,j) + \max \begin{cases} M[i-1,j-1] \\ X[i-1,j-1] \\ Y[i-1,j-1] \end{cases}$$

$$X[i,j] = \max \begin{cases} M[i,j-k] - \operatorname{gap}(k) & \text{for } 1 \le k \le j \\ Y[i,j-k] - \operatorname{gap}(k) & \text{for } 1 \le k \le j \end{cases}$$

$$Y[i,j] = \max \begin{cases} M[i-k,j] - \operatorname{gap}(k) & \text{for } 1 \le k \le i \\ X[i-k,j] - \operatorname{gap}(k) & \text{for } 1 \le k \le i \end{cases}$$

Final score is max {M[n,m], X[n,m], Y[n,m]}.

How do you do the traceback?

Runtime:

- Assume |X| = |Y| = n for simplicity: $3n^2$ subproblems
- 2n² subproblems take O(n) time to solve (because we have to try all k)

$$\Rightarrow$$
 O(n³) total time

Affine Gap Penalties

- $O(n^3)$ for general gap penalties is usually too slow...
- We can still encourage spaces to group together using a special case of general penalties called *affine gap penalties*:

```
gap_start = the cost of starting a gap
gap_extend = the cost of extending a gap by one more space
```

 Same idea of using 3 matrices, but now we don't need to search over all gap lengths, we just have to know whether we are starting a new gap or not.

Affine Gap Penalties

$$\begin{split} M[i,j] &= \mathrm{match}(i,j) + \mathrm{max} \begin{cases} M[i-1,j-1] \\ X[i-1,j-1] \end{cases} & \text{If previous alignment ends in } \\ Y[i-1,j-1] & \text{match, this is a new gap} \end{cases} \\ \text{x and y} & \begin{cases} \mathrm{gap_start} + \mathrm{gap_extend} + M[i,j-1] \\ \mathrm{gap_extend} + X[i,j-1] \\ \mathrm{gap_start} + \mathrm{gap_extend} + Y[i,j-1] \end{cases} \end{split}$$

$$Y[i,j] = \max \begin{cases} \text{gap_start} + \text{gap_extend} + M[i-1,j] \\ \text{gap_start} + \text{gap_extend} + X[i-1,j] \\ \text{gap_extend} + Y[i-1,j] \end{cases}$$

Affine Gap Runtime

- 3n² subproblems
- Each one takes constant time
- Total runtime $O(n^2)$, back to the run time of the basic running time.

Recap

- Semiglobal alignment: 0 initial columns or take maximums over last row or column.
- local alignment: extra "0" case.
- General gap penalties require 3 matrices and $O(n^3)$ time.
- Affine gap penalties require 3 matrices, but only $O(n^2)$ time.